Crunch

GP: 26 | W: 9 | L: 17 | OTL: 0 | P: 18
GF: 95 | GA: 153 | PP%: 29.59% | PK%: 48.25%
DG: Marc Antoine Clément | Morale : 46 | Moyenne d'Équipe : 69
Prochain matchs #361 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Gabriel BourqueX100.008141817969767869565057746862584856680
2Brad HuntX100.005941888461796982306755696653523553680
3Sebastian D AhoX100.005542798358679077305054746351515752680
4Andrei MironovX100.005943765376536560305055735950506056620
Rayé
MOYENNE D'ÉQUIPE100.00644281756669767237545573645453505467
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jon Gillies100.00747579927984828079727151636456750
2Laurent Brossoit100.00758080847774777577737352644756730
Rayé
MOYENNE D'ÉQUIPE100.0075788088787980787873725264565674
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Scott Arniel62847578858679can5511,200,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brad HuntCrunch (TB.)D2601111-4759157343440.00%1638614.860003100000000.00%0925000.5700001243
2Sebastian D AhoCrunch (TB.)D26088-620766740290.00%142349.010000000000000.00%0410000.6800000233
Stats d'équipe Total ou en Moyenne5201919-1095162114083730.00%3062011.930003100000000.00%01335000.6100001476
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Stats d'équipe Total ou en Moyenne0.0000.0000.000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Andrei MironovCrunch (TB.)D231994-07-29No194 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Brad HuntCrunch (TB.)D291988-08-24No187 Lbs5 ft9NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Gabriel BourqueCrunch (TB.)LW271990-09-23No206 Lbs5 ft10NoNoNo1Avec RestrictionPro & Farm950,000$0$0$NoLien
Jon GilliesCrunch (TB.)G231994-01-22No223 Lbs6 ft6NoNoNo2Contrat d'EntréePro & Farm750,000$0$0$No750,000$Lien
Laurent BrossoitCrunch (TB.)G241993-03-23No204 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Sebastian D AhoCrunch (TB.)D211996-02-17No170 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm770,000$0$0$No770,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
624.50197 Lbs6 ft11.33786,667$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
140122
230122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
2Brad Hunt30122
3Sebastian D Aho20122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
160122
240122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Brad Hunt40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Brad Hunt40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
240122Brad Hunt40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Brad Hunt40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Sebastian D Aho, Sebastian D Aho,
Tirs de Pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000018-71010000018-70000000000000.00012300144535125190236192229101217400.00%6350.00%016541939.38%16039440.61%22954242.25%539313595238426202
2Bears32100000161061010000034-122000000136740.6671630460014453516919023619225727184314750.00%9455.56%016541939.38%16039440.61%22954242.25%539313595238426202
3Bruins2110000011101110000007431010000046-220.5001121320014453513619023619225222142810660.00%7442.86%016541939.38%16039440.61%22954242.25%539313595238426202
4Condors1010000026-41010000026-40000000000000.00024600144535119190236192236710135120.00%5260.00%016541939.38%16039440.61%22954242.25%539313595238426202
5Devils1010000019-8000000000001010000019-800.000123001445351261902361922381612152150.00%6433.33%016541939.38%16039440.61%22954242.25%539313595238426202
6Icedogs1010000058-31010000058-30000000000000.0005914001445351221902361922331812102150.00%6350.00%016541939.38%16039440.61%22954242.25%539313595238426202
7Marlies20200000616-101010000035-210100000311-800.00061218001445351651902361922822722199222.22%11736.36%016541939.38%16039440.61%22954242.25%539313595238426202
8Monsters11000000422110000004220000000000021.00048120014453511919023619222656114125.00%30100.00%016541939.38%16039440.61%22954242.25%539313595238426202
9Moose1010000038-51010000038-50000000000000.00036900144535134190236192235131410100.00%7442.86%016541939.38%16039440.61%22954242.25%539313595238426202
10Penguins20200000311-81010000025-31010000016-500.000369001445351621902361922663419256116.67%7271.43%016541939.38%16039440.61%22954242.25%539313595238426202
11Phantoms1010000068-21010000068-20000000000000.00061218101445351331902361922355624400.00%3233.33%016541939.38%16039440.61%22954242.25%539313595238426202
12Rocket5310100029218330000002091120101000912-380.800295483001445351108190236192213555366618844.44%18761.11%016541939.38%16039440.61%22954242.25%539313595238426202
13Senateurs20200000319-1610100000111-101010000028-600.000369001445351491902361922882624221119.09%12925.00%016541939.38%16039440.61%22954242.25%539313595238426202
14Thunderbird20200000114-131010000013-210100000011-1100.00012300144535135190236192282262925400.00%12741.67%016541939.38%16039440.61%22954242.25%539313595238426202
Total268170100095153-5815510000005881-231137010003772-35180.346951812761014453516201902361922823302238338982929.59%1145948.25%016541939.38%16039440.61%22954242.25%539313595238426202
16Wolves11000000431000000000001100000043121.00047110014453511819023619222911410400.00%2150.00%016541939.38%16039440.61%22954242.25%539313595238426202
_Since Last GM Reset268170100095153-5815510000005881-231137010003772-35180.346951812761014453516201902361922823302238338982929.59%1145948.25%016541939.38%16039440.61%22954242.25%539313595238426202
_Vs Conference217130100080120-401156000004751-41027010003369-36160.381801532331014453515021902361922661243186278822732.93%884647.73%016541939.38%16039440.61%22954242.25%539313595238426202
_Vs Division1348010005080-307430000032320605010001848-30100.38550951450014453512931902361922439156125160521732.69%603443.33%016541939.38%16039440.61%22954242.25%539313595238426202

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
2618L39518127662082330223833810
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
26817100095153
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
1551000005881
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
113710003772
Derniers 10 Matchs
WLOTWOTL SOWSOL
370000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
982929.59%1145948.25%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
19023619221445351
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
16541939.38%16039440.61%22954242.25%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
539313595238426202


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-10-118Crunch0Thunderbird11LSommaire du Match
6 - 2018-10-1421Bruins4Crunch7WSommaire du Match
10 - 2018-10-1834Senateurs11Crunch1LSommaire du Match
13 - 2018-10-2144Crunch3Marlies11LSommaire du Match
16 - 2018-10-2453Crunch4Bruins6LSommaire du Match
18 - 2018-10-2659Crunch7Bears5WSommaire du Match
19 - 2018-10-2767Marlies5Crunch3LSommaire du Match
22 - 2018-10-3084Crunch2Senateurs8LSommaire du Match
25 - 2018-11-0293Icedogs8Crunch5LSommaire du Match
28 - 2018-11-05111Rocket3Crunch10WSommaire du Match
30 - 2018-11-07120Crunch6Rocket5WXSommaire du Match
32 - 2018-11-09134Phantoms8Crunch6LSommaire du Match
36 - 2018-11-13153Thunderbird3Crunch1LSommaire du Match
38 - 2018-11-15162Crunch3Rocket7LSommaire du Match
41 - 2018-11-18175Rocket2Crunch5WSommaire du Match
47 - 2018-11-24195Monsters2Crunch4WSommaire du Match
52 - 2018-11-29218Condors6Crunch2LSommaire du Match
57 - 2018-12-04235Crunch1Devils9LSommaire du Match
60 - 2018-12-07243Penguins5Crunch2LSommaire du Match
63 - 2018-12-10256Crunch6Bears1WSommaire du Match
66 - 2018-12-13266Admirals8Crunch1LSommaire du Match
69 - 2018-12-16277Crunch4Wolves3WSommaire du Match
71 - 2018-12-18290Rocket4Crunch5WSommaire du Match
76 - 2018-12-23313Moose8Crunch3LSommaire du Match
80 - 2018-12-27330Crunch1Penguins6LSommaire du Match
81 - 2018-12-28335Bears4Crunch3LSommaire du Match
87 - 2019-01-03361Monsters-Crunch-
89 - 2019-01-05376Crunch-Condors-
90 - 2019-01-06382Gulls-Crunch-
94 - 2019-01-10393Crunch-Bruins-
97 - 2019-01-13409Bears-Crunch-
103 - 2019-01-19433Bruins-Crunch-
106 - 2019-01-22443Crunch-Stars-
109 - 2019-01-25457Marlies-Crunch-
111 - 2019-01-27470Crunch-Moose-
115 - 2019-01-31481Rampages-Crunch-
117 - 2019-02-02491Crunch-Senateurs-
119 - 2019-02-04499Crunch-Bears-
120 - 2019-02-05505Icedogs-Crunch-
128 - 2019-02-13529Barracuda-Crunch-
131 - 2019-02-16550Stars-Crunch-
133 - 2019-02-18559Crunch-Marlies-
137 - 2019-02-22576Crunch-Devils-
138 - 2019-02-23580Blacknight-Crunch-
141 - 2019-02-26595Crunch-Blacknight-
143 - 2019-02-28601Bruins-Crunch-
146 - 2019-03-03616Crunch-Rocket-
148 - 2019-03-05625Sound Tigers-Crunch-
150 - 2019-03-07636Crunch-Reigh-
152 - 2019-03-09649Wolves-Crunch-
154 - 2019-03-11658Crunch-Sound Tigers-
156 - 2019-03-13670Crunch-Icedogs-
157 - 2019-03-14673Penguins-Crunch-
160 - 2019-03-17681Crunch-Sound Tigers-
162 - 2019-03-19690Crunch-Gulls-
163 - 2019-03-20698Phantoms-Crunch-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
168 - 2019-03-25720Sound Tigers-Crunch-
171 - 2019-03-28729Crunch-Admirals-
173 - 2019-03-30739Crunch-Senateurs-
176 - 2019-04-02746Reigh-Crunch-
182 - 2019-04-08769Senateurs-Crunch-
186 - 2019-04-12784Crunch-Gulls-
188 - 2019-04-14794Heat-Crunch-
190 - 2019-04-16801Crunch-Heat-
192 - 2019-04-18812Crunch-Phantoms-
194 - 2019-04-20818Senateurs-Crunch-
197 - 2019-04-23830Crunch-Phantoms-
200 - 2019-04-26841Marlies-Crunch-
202 - 2019-04-28850Crunch-Bruins-
204 - 2019-04-30859Crunch-Penguins-
206 - 2019-05-02869Icedogs-Crunch-
213 - 2019-05-09891Thunderbird-Crunch-
214 - 2019-05-10901Crunch-Monsters-
218 - 2019-05-14914Crunch-Thunderbird-
219 - 2019-05-15920Devils-Crunch-
222 - 2019-05-18935Crunch-Rampages-
223 - 2019-05-19940Devils-Crunch-
225 - 2019-05-21945Crunch-Monsters-
226 - 2019-05-22951Crunch-Barracuda-
230 - 2019-05-26961Crunch-Thunderbird-
232 - 2019-05-28968Thunderbird-Crunch-
233 - 2019-05-29971Crunch-Marlies-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
26 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
592,620$ 472,000$ 472,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 167,328$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 153 7,055$ 1,079,415$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2268170100095153-5815510000005881-231137010003772-3518951812761014453516201902361922823302238338982929.59%1145948.25%016541939.38%16039440.61%22954242.25%539313595238426202
Total Saison Régulière268170100095153-5815510000005881-231137010003772-3518951812761014453516201902361922823302238338982929.59%1145948.25%016541939.38%16039440.61%22954242.25%539313595238426202