Flyers

GP: 67 | W: 35 | L: 22 | OTL: 10 | P: 80
GF: 197 | GA: 162 | PP%: 20.79% | PK%: 82.33%
DG: Jonathan Gratton | Morale : 51 | Moyenne d'Équipe : 76
Prochain matchs #788 vs Bruins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jakub VoracekX100.005944849080929892669172596880657054860
2Joe ThorntonX99.006343808186897675828071557299903668840
3Sebastian AhoXX99.006542849161899383757581607756557668810
4Clayton KellerXXX99.005642848958899781788075607153528968790
5Mika ZibanejadX100.007141888484888872816181697666608568790
6James van RiemsdykX100.006042837683829777505784597974647367780
7Alexander SteenXXX100.006442848275909180667167766985684368770
8Nick BoninoXX100.005941858572848675845563897069623968750
9Travis KonecnyXX100.007043808460829775606275637256538168750
10Kevin HayesXXX100.006241867987879279816077727562587768730
11Cody EakinX100.006442847768829670825661846868595468720
12Nolan PatrickX100.006342787979828980815864607052519357720
13Jaccob SlavinX99.006241927279919775306258916959605768760
14Brian DumoulinX100.007042897782869771305455876859606168750
15Darnell NurseX100.007945808286899772306056806957588668750
16Ian ColeX100.007245756779808375305957866766606768740
17Esa LindellX100.006842897081909676306057796856556462730
18Thomas ChabotX100.006342847974779084308576697052518363720
Rayé
1Valentin Zykov (R)X100.006644687581619277506870606750507620730
2Marcus FolignoX100.008445687187779369675658706666605220680
3Sami VatanenX100.007143858263908981307055796663575156740
MOYENNE D'ÉQUIPE99.81664382807685927758666772706459676176
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Antti Raanta98.00848888799195949296828160723667840
2Antti Niemi100.00767385867983838081747483802368780
Rayé
1Alex Stalock100.00787886788383818482767557684719760
MOYENNE D'ÉQUIPE99.3379808681848786858677776773355179
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bruce Cassidy69929386776266CAN5244,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sebastian AhoFlyersC/LW67274774113408457303991508.91%28131219.59102232492390000154548.30%1477522001.13211000285
2Jakub VoracekFlyersRW62313566760098752358215913.19%44140222.63813212520900011550446.45%2117529100.94190001105
3Clayton KellerFlyersC/LW/RW6725386373206856273951879.16%34141421.12102030522380002851445.45%1326827020.8901000724
4Joe ThorntonFlyersC67213556382010085147389414.29%16129919.3981422302290000186051.94%1756269000.8604000154
5Mika ZibanejadFlyersC671726431918092951555510510.97%26110616.526111720197000172150.92%11473718000.78210000313
6Kevin HayesFlyersC/LW/RW6717183514180756419973958.54%1099314.82538181140005843156.82%444325000.7017000010
7Alexander SteenFlyersC/LW/RW67171532410075531625110410.49%3291113.6013465511281642154.26%943316000.7000000322
8James van RiemsdykFlyersLW6814173184557745156361068.97%16113716.72178151840003263241.07%562410000.5513100241
9Jaccob SlavinFlyersD674242812807813912366543.25%127189428.28268182310222254200.00%01878000.3000000020
10Cody EakinFlyersC67810182220628457234014.04%3589213.31303107203392252049.32%7401121000.4000000111
11Nick BoninoFlyersC/LW677101766051619943677.07%3181412.1500000202112351048.60%1072433000.4200000012
12Travis KonecnyFlyersLW/RW67512176520732915332873.27%1274011.0600016000151142.86%56447000.4613000011
13Sami VatanenFlyersD5551116514048516816217.35%3485415.53461027206000014100.00%01328000.3700000010
14Darnell NurseFlyersD6731215440097968340353.61%94144721.611014680002157010.00%01345000.2100000012
15Brian DumoulinFlyersD67311149240681019345353.23%109143421.410000131015252000.00%0979000.2000000002
16Ian ColeFlyersD67211131542058825124233.92%72109916.411124320000141000.00%0434000.2400000000
17Esa LindellFlyersD602101292029405224283.85%3786714.472469158000036010.00%0423000.2800000000
18Nolan PatrickFlyersC563710-332031255324365.66%84668.3200000000001047.94%26776000.4300000001
19Thomas ChabotFlyersD1935848029224021167.50%2142322.28303884000011000.00%0138000.3800000011
20Valentin ZykovFlyersRW130331807311180.00%0806.2000000000000050.00%202000.7400000000
Stats d'équipe Total ou en Moyenne1204214357571143557513001263251388814508.52%7862059417.106511017529623424610501891292150.30%4759541520120.55848100204134
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Antti RaantaFlyers56291890.9352.223407601261948848420.6223756111634
2Antti NiemiFlyers116410.9272.356630026355158101.00031156011
Stats d'équipe Total ou en Moyenne673522100.9342.2440716015223031006520.6504067671645


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Alex StalockFlyersG301987-07-28No191 Lbs6 ft0NoNoNo1Sans RestrictionPro & Farm750,000$750,000$182,773$NoLien
Alexander SteenFlyersC/LW/RW331984-03-01No211 Lbs6 ft0NoNoNo3Sans RestrictionPro & Farm5,750,000$5,750,000$1,401,261$NoLien
Antti NiemiFlyersG341983-08-29No215 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm900,000$900,000$219,328$NoLien
Antti RaantaFlyersG281989-05-12No195 Lbs6 ft0NoNoNo3Sans RestrictionPro & Farm4,250,000$4,250,000$1,035,714$NoLien
Brian DumoulinFlyersD261991-09-06No207 Lbs6 ft4NoNoNo5Contrat d'EntréePro & Farm4,100,000$4,100,000$999,160$NoLien
Clayton KellerFlyersC/LW/RW191998-07-29No170 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm885,833$885,833$215,875$NoLien
Cody EakinFlyersC261991-05-24No190 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm900,000$900,000$219,328$NoLien
Darnell NurseFlyersD221995-02-04No221 Lbs6 ft4NoNoNo2Contrat d'EntréePro & Farm3,200,000$3,200,000$779,832$NoLien
Esa LindellFlyersD231994-05-23No213 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm2,200,000$2,200,000$536,134$NoLien
Ian ColeFlyersD281989-02-21No219 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm4,250,000$4,250,000$1,035,714$NoLien
Jaccob SlavinFlyersD231994-05-01No205 Lbs6 ft3NoNoNo7Contrat d'EntréePro & Farm5,300,000$5,300,000$1,291,597$NoLien
Jakub VoracekFlyersRW281989-08-15No214 Lbs6 ft2NoNoNo6Sans RestrictionPro & Farm8,250,000$8,250,000$2,010,504$NoLien
James van RiemsdykFlyersLW281989-05-04No217 Lbs6 ft3NoNoNo5Sans RestrictionPro & Farm7,000,000$7,000,000$1,705,882$NoLien
Joe ThorntonFlyersC381979-07-02No220 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm6,000,000$6,000,000$1,462,185$NoLien
Kevin HayesFlyersC/LW/RW251992-05-08No217 Lbs6 ft5NoNoNo1Contrat d'EntréePro & Farm5,175,000$5,175,000$1,261,134$NoLien
Marcus FolignoFlyersLW261991-08-10No232 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm2,875,000$2,875,000$700,630$NoLien
Mika ZibanejadFlyersC241993-04-18No227 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm5,350,000$5,350,000$1,303,782$NoLien
Nick BoninoFlyersC/LW291988-04-20No196 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm4,100,000$4,100,000$999,160$NoLien
Nolan PatrickFlyersC191998-09-19No198 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm925,000$925,000$225,420$NoLien
Sami VatanenFlyersD261991-06-03No185 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm4,875,000$4,875,000$1,188,025$NoLien
Sebastian AhoFlyersC/LW201997-07-26No172 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm925,000$925,000$225,420$NoLien
Thomas ChabotFlyersD201997-01-30No196 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm863,333$863,333$210,392$NoLien
Travis KonecnyFlyersLW/RW201997-03-11No175 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm894,166$894,166$217,906$NoLien
Valentin ZykovFlyersRW221995-05-15Yes224 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$750,000$182,773$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2425.71205 Lbs6 ft12.503,352,847$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
80,468,332$61,974,166$47,125,000$30,000,000$24,650,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sebastian AhoJoe ThorntonClayton Keller40005
2James van RiemsdykMika ZibanejadJakub Voracek30104
3Kevin HayesNolan PatrickAlexander Steen20122
4Nick BoninoCody EakinTravis Konecny10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinThomas Chabot40014
2Brian DumoulinDarnell Nurse30113
3Ian ColeEsa Lindell20113
4Jaccob SlavinBrian Dumoulin10113
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sebastian AhoJoe ThorntonClayton Keller60005
2James van RiemsdykMika ZibanejadJakub Voracek40005
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Thomas ChabotEsa Lindell60005
2Darnell NurseJaccob Slavin40005
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Cody EakinNick Bonino60140
2Alexander SteenKevin Hayes40140
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinBrian Dumoulin60140
2Darnell NurseIan Cole40140
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Cody Eakin60122Jaccob SlavinBrian Dumoulin60140
2Nick Bonino40122Darnell NurseIan Cole40140
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Sebastian AhoJakub Voracek60104
2Mika ZibanejadClayton Keller40104
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinThomas Chabot60113
2Darnell NurseBrian Dumoulin40113
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Sebastian AhoJoe ThorntonClayton KellerJaccob SlavinBrian Dumoulin
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick BoninoCody EakinAlexander SteenJaccob SlavinBrian Dumoulin
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mika Zibanejad, James van Riemsdyk, Travis KonecnyMika Zibanejad, James van RiemsdykAlexander Steen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ian Cole, Thomas Chabot, Darnell NurseIan ColeThomas Chabot, Darnell Nurse
Tirs de Pénalité
James van Riemsdyk, Sebastian Aho, Mika Zibanejad, Clayton Keller, Joe Thornton
Gardien
#1 : Antti Raanta, #2 : Antti Niemi


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Avalanche2010000179-21000000134-11010000045-110.25071219003220672321233772820384125.00%10370.00%1933181751.35%913181050.44%46190850.77%382148183717
2Blackhawks1010000012-11010000012-10000000000000.0001120001002787120351312195120.00%60100.00%0933181751.35%913181050.44%46190850.77%20102210178
3Blue Jackets4210000117107110000008173110000199050.625172845004580142503854315526268021628.57%13284.62%0933181751.35%913181050.44%46190850.77%854886377334
4Blues32000001853110000002112100000164250.833814220022419838322848836206516318.75%10190.00%0933181751.35%913181050.44%46190850.77%683961265527
5Bruins3010100178-11010000034-12000100144030.50071320001232115314338710640185710110.00%8275.00%0933181751.35%913181050.44%46190850.77%633768295424
6Canadiens3110010067-12010010036-31100000031230.5006101600222010230353709728205117317.65%10190.00%0933181751.35%913181050.44%46190850.77%673960275225
7Capitals5220001011101311000106512110000055060.60011193000523116971415731714446842214.55%23482.61%1933181751.35%913181050.44%46190850.77%10761111488641
8Devils50300101915-62010000147-33020010058-320.20091524001800195567069218168408725520.00%20385.00%0933181751.35%913181050.44%46190850.77%10963110438542
9Ducks2110000045-11010000024-21100000021120.500461000112057162318064182039200.00%10190.00%0933181751.35%913181050.44%46190850.77%362049193314
10Flames22000000743110000003121100000043141.00071118002320652815220783014277114.29%7185.71%0933181751.35%913181050.44%46190850.77%422546183114
11Golden Knights2110000045-1110000002111010000024-220.50045910121067212422078371245400.00%6183.33%0933181751.35%913181050.44%46190850.77%412343173517
12Islanders63200001161423210000010733110000167-170.58316294510410212348576736205625410526519.23%27774.07%0933181751.35%913181050.44%46190850.77%130791335410050
13Jets22000000624110000004131100000021141.00069150013207318203507925144310220.00%70100.00%1933181751.35%913181050.44%46190850.77%432642183316
14Kings22000000752110000004311100000032141.00071320000340741428320722124386233.33%12466.67%0933181751.35%913181050.44%46190850.77%372049183215
15Lightning33000000954220000006331100000032161.000913220004509631402501042422588112.50%10280.00%1933181751.35%913181050.44%46190850.77%643761265326
16Maple Leafs3110100012111100010004312110000088040.667122133002631116432942210027245117423.53%12466.67%0933181751.35%913181050.44%46190850.77%663963275025
17Oilers21100000871110000004221010000045-120.50081422002420722140110602524278450.00%12283.33%0933181751.35%913181050.44%46190850.77%402446193314
18Panthers3120000011741010000013-221100000104620.33311223300155099383625010735205314535.71%9188.89%0933181751.35%913181050.44%46190850.77%613771264723
19Penguins53100001209112200000012483110000185370.70020325200114511715666487119415110828828.57%23386.96%0933181751.35%913181050.44%46190850.77%10759103499345
20Predateurs2020000035-21010000012-11010000023-100.00036900021069291525074371641600.00%8187.50%0933181751.35%913181050.44%46190850.77%412445173316
21Senateurs20001010642100000104311000100021141.0006713000222662212304761814336116.67%7185.71%0933181751.35%913181050.44%46190850.77%412348193617
22Sharks311000011183210000018441010000034-130.50011182900434011241383339740205410330.00%10190.00%0933181751.35%913181050.44%46190850.77%653767275226
23Stars21000010752110000003211000001043141.00071017000331822636203822712427114.29%6266.67%0933181751.35%913181050.44%46190850.77%452743183517
Total6729220323819716235321690112398732535131302115998910800.5971973285252047796510236879678577947230575054312452795820.79%2664782.33%4933181751.35%913181050.44%46190850.77%142782814866211164564
_Since Last GM Reset6729220323819716235321690112398732535131302115998910800.5971973285252047796510236879678577947230575054312452795820.79%2664782.33%4933181751.35%913181050.44%46190850.77%142782814866211164564
_Vs Conference421614032251241002419860112161461523880210463549490.58312420933310315038815055134864983414214133357671944020.62%1623081.48%2933181751.35%913181050.44%46190850.77%905526920390733357
_Vs Division25109001147358151163000114024161446001033334-1270.54073123196102529183911318291301218312412174641222520.49%1061982.08%1933181751.35%913181050.44%46190850.77%540312545234438214

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
6780L119732852523682305750543124520
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
6729223238197162
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3216911239873
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
35131321159989
Derniers 10 Matchs
WLOTWOTL SOWSOL
441001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2795820.79%2664782.33%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
7967857794747796510
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
933181751.35%913181050.44%46190850.77%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
142782814866211164564


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2018-10-1215Penguins3Flyers6WSommaire du Match
6 - 2018-10-1425Flyers5Blue Jackets2WSommaire du Match
9 - 2018-10-1736Capitals3Flyers2LSommaire du Match
12 - 2018-10-2052Islanders2Flyers3WSommaire du Match
15 - 2018-10-2368Flyers1Penguins2LSommaire du Match
18 - 2018-10-2674Devils3Flyers1LSommaire du Match
20 - 2018-10-2885Flyers1Devils2LXSommaire du Match
23 - 2018-10-31100Blue Jackets1Flyers8WSommaire du Match
24 - 2018-11-01106Flyers3Capitals2WSommaire du Match
29 - 2018-11-06122Flyers3Islanders1WSommaire du Match
31 - 2018-11-08133Maple Leafs3Flyers4WXSommaire du Match
33 - 2018-11-10139Flyers6Maple Leafs4WSommaire du Match
36 - 2018-11-13151Flyers5Blues2WSommaire du Match
39 - 2018-11-16162Sharks3Flyers2LXXSommaire du Match
42 - 2018-11-19173Flyers2Islanders3LXXSommaire du Match
44 - 2018-11-21186Islanders3Flyers1LSommaire du Match
46 - 2018-11-23195Flyers3Lightning2WSommaire du Match
48 - 2018-11-25205Penguins1Flyers6WSommaire du Match
52 - 2018-11-29219Flyers1Blues2LXXSommaire du Match
54 - 2018-12-01231Jets1Flyers4WSommaire du Match
58 - 2018-12-05241Flyers8Panthers1WSommaire du Match
62 - 2018-12-09255Blackhawks2Flyers1LSommaire du Match
65 - 2018-12-12269Flyers4Stars3WXXSommaire du Match
68 - 2018-12-15279Flyers4Flames3WSommaire du Match
69 - 2018-12-16285Capitals1Flyers2WSommaire du Match
73 - 2018-12-20300Bruins4Flyers3LSommaire du Match
75 - 2018-12-22310Flyers2Bruins3LXXSommaire du Match
77 - 2018-12-24322Flyers2Panthers3LSommaire du Match
79 - 2018-12-26329Golden Knights1Flyers2WSommaire du Match
83 - 2018-12-30345Flyers1Islanders3LSommaire du Match
86 - 2019-01-02355Oilers2Flyers4WSommaire du Match
89 - 2019-01-05369Flyers3Kings2WSommaire du Match
91 - 2019-01-07378Capitals1Flyers2WXXSommaire du Match
94 - 2019-01-10394Flyers4Oilers5LSommaire du Match
97 - 2019-01-13402Blues1Flyers2WSommaire du Match
101 - 2019-01-17421Stars2Flyers3WSommaire du Match
104 - 2019-01-20429Flyers2Maple Leafs4LSommaire du Match
106 - 2019-01-22441Flyers2Golden Knights4LSommaire du Match
109 - 2019-01-25451Flyers2Devils3LSommaire du Match
110 - 2019-01-26455Senateurs3Flyers4WXXSommaire du Match
114 - 2019-01-30474Flyers2Predateurs3LSommaire du Match
115 - 2019-01-31479Lightning1Flyers3WSommaire du Match
118 - 2019-02-03491Flyers4Avalanche5LSommaire du Match
120 - 2019-02-05498Flyers2Senateurs1WXSommaire du Match
122 - 2019-02-07504Canadiens2Flyers1LXSommaire du Match
125 - 2019-02-10517Flyers2Devils3LSommaire du Match
127 - 2019-02-12526Lightning2Flyers3WSommaire du Match
129 - 2019-02-14540Flyers2Ducks1WSommaire du Match
133 - 2019-02-18552Avalanche4Flyers3LXXSommaire du Match
138 - 2019-02-23574Sharks1Flyers6WSommaire du Match
142 - 2019-02-27593Flyers6Penguins1WSommaire du Match
143 - 2019-02-28598Kings3Flyers4WSommaire du Match
147 - 2019-03-04618Predateurs2Flyers1LSommaire du Match
149 - 2019-03-06625Flyers2Capitals3LSommaire du Match
152 - 2019-03-09640Flyers1Penguins2LXXSommaire du Match
153 - 2019-03-10646Canadiens4Flyers2LSommaire du Match
157 - 2019-03-14660Flyers3Blue Jackets4LXXSommaire du Match
159 - 2019-03-16669Ducks4Flyers2LSommaire du Match
161 - 2019-03-18679Flyers3Canadiens1WSommaire du Match
163 - 2019-03-20692Flyers2Jets1WSommaire du Match
165 - 2019-03-22696Flames1Flyers3WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
167 - 2019-03-24702Flyers3Sharks4LSommaire du Match
170 - 2019-03-27718Devils4Flyers3LXXSommaire du Match
173 - 2019-03-30729Flyers1Blue Jackets3LSommaire du Match
176 - 2019-04-02741Flyers2Bruins1WXSommaire du Match
177 - 2019-04-03744Islanders2Flyers6WSommaire du Match
180 - 2019-04-06765Panthers3Flyers1LSommaire du Match
187 - 2019-04-13788Bruins-Flyers-
189 - 2019-04-15799Flyers-Canadiens-
193 - 2019-04-19813Blues-Flyers-
197 - 2019-04-23827Flyers-Senateurs-
199 - 2019-04-25836Senateurs-Flyers-
201 - 2019-04-27845Flyers-Lightning-
206 - 2019-05-02858Penguins-Flyers-
208 - 2019-05-04865Flyers-Blackhawks-
211 - 2019-05-07878Flyers-Sharks-
213 - 2019-05-09888Maple Leafs-Flyers-
217 - 2019-05-13910Devils-Flyers-
222 - 2019-05-18931Panthers-Flyers-
227 - 2019-05-23947Flyers-Capitals-
230 - 2019-05-26958Blue Jackets-Flyers-
235 - 2019-05-31974Blue Jackets-Flyers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000200040001000
Prix des Billets1601007550300
Assistance101,96085,77530,21964,63417,611
Attendance PCT53.10%53.61%47.22%50.50%55.03%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
9 9381 - 52.12% 1,491,031$47,713,002$18000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
61,895,268$ 80,468,332$ 79,899,582$ 0$ 0$
Cap Salarial Par JourCap salarial à ce jourTaxe de Luxe TotaleJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
80,468,332$ 58,870,008$ 0$ 24 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
13,419,282$ 58 354,909$ 20,584,722$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
20,963,544$ 80,468,332$ -9,238,652$ -16,782,914$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
Sebastian AhoAGE:20PO:76OV:81
Clayton KellerAGE:19PO:89OV:79
James van RiemsdykAGE:28PO:73OV:78
Alexander SteenAGE:33PO:43OV:77
Travis KonecnyAGE:20PO:81OV:75
Nick BoninoAGE:29PO:39OV:75
Kevin HayesAGE:25PO:77OV:73
Marcus FolignoAGE:26PO:52OV:68
Jordan WealAGE:25PO:63OV:67
Joe ThorntonAGE:38PO:36OV:84
Sebastian AhoAGE:20PO:76OV:81
Clayton KellerAGE:19PO:89OV:79
Mika ZibanejadAGE:24PO:85OV:79
Alexander SteenAGE:33PO:43OV:77
Nick BoninoAGE:29PO:39OV:75
Kevin HayesAGE:25PO:77OV:73
Nolan PatrickAGE:19PO:93OV:72
Cody EakinAGE:26PO:54OV:72
Jordan WealAGE:25PO:63OV:67
Jakub VoracekAGE:28PO:70OV:86
Clayton KellerAGE:19PO:89OV:79
Alexander SteenAGE:33PO:43OV:77
Travis KonecnyAGE:20PO:81OV:75
Kevin HayesAGE:25PO:77OV:73
*Valentin ZykovAGE:22PO:76OV:73
Jordan WealAGE:25PO:63OV:67

Défense #1Défense #2Gardien
Jaccob SlavinAGE:23PO:57OV:76
Darnell NurseAGE:22PO:86OV:75
Brian DumoulinAGE:26PO:61OV:75
Ian ColeAGE:28PO:67OV:74
Sami VatanenAGE:26PO:51OV:74
Esa LindellAGE:23PO:64OV:73
Thomas ChabotAGE:20PO:83OV:72
Troy StecherAGE:23PO:43OV:69
Jordan SchmaltzAGE:23PO:78OV:60
*Philippe MyersAGE:20PO:44OV:59
Antti RaantaAGE:28PO:36OV:84
Antti NiemiAGE:34PO:23OV:78
Alex StalockAGE:30PO:47OV:76

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Adam RuzickaFlyers2018109
Benoit-Olivier GroulxFlyers201837
Elias PeterssonFlyers20175
Filip JohanssonFlyers201847
Glen GawdinFlyers
Hudson ElynuikFlyers2018107
Ilya SamsonovFlyers201522
Jack StudnickaFlyers201861
Joe VelenoFlyers201818
Maksim SushkoFlyers201895
Maksim ZhukovFlyers201883
Morgan FrostFlyers201727
Quinn HughuesFlyers201810
Ryan MerkleyFlyers201835
Tye SmithFlyers201815
Tyler BensonFlyers201871
Vitaly AbramovFlyers201665

Choix au Repêchage

Année R1R2R3R4R5
3PHI FLA PHI NHS ANA PHI ANA PHI ANA DAL PHI ANA DAL
4PHI EDM PHI FLA PHI PHI PHI
5PHI PHI PHI PHI PHI
6PHI PHI PHI PHI PHI
7PHI PHI PHI PHI PHI



[2019-02-12 10:43:27] - TRADE : From Sharks to Flyers : Jakub Voracek (86).
[2019-02-12 10:43:27] - TRADE : From Flyers to Sharks : Kyle Okposo (77), Antoine Morand (P), Cayden Primeau (P), Y:3-RND:1-ANA, Y:3-RND:3-DAL.
[2018-11-21 21:48:09] - New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-16 22:19:02] - New Record for Team's Most Hits (31) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Points (23) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Assists (15) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Goals (8) in 1 Game for Flyers!
[2018-10-16 22:00:19] - TRADE : From Penguins to Flyers : James van Riemsdyk (78), Alex Stalock (77).
[2018-10-16 22:00:19] - TRADE : From Flyers to Penguins : Brandon Saad (71), Michal Neuvirth (78), Y:3-RND:2-DAL.
[2018-10-03 20:42:40] - Cody Eakin was added to Flyers.
[2018-10-03 20:42:22] - Antti Niemi was added to Flyers.
[2018-10-01 23:41:34] - Nick Bonino was added to Flyers.
[2018-10-01 23:41:26] - Joe Thornton was added to Flyers.
[2018-09-24 22:25:17] - TRADE : From Stars to Flyers : Clayton Keller (79).
[2018-09-24 22:25:17] - TRADE : From Flyers to Stars : Cale Makar (P), Jake Bean (P).
[2018-09-23 19:32:02] - TRADE : From Flyers to Penguins : John Carlson (80).
[2018-09-23 19:32:02] - TRADE : From Penguins to Flyers : Darnell Nurse (75), Y:4-RND:1-EDM, Y:3-RND:2-NHS.
[2018-09-10 13:05:23] - Troy Brouwer was released.
[2018-09-10 13:05:23] - Flyers paid 0 $ to release Troy Brouwer.
[2018-09-10 13:05:18] - Shawn Matthias was released.
[2018-09-10 13:05:18] - Flyers paid 0 $ to release Shawn Matthias.
[2018-09-10 13:05:07] - Jori Lehtera was released.
[2018-09-10 13:05:07] - Flyers paid 0 $ to release Jori Lehtera.
[2018-09-10 13:05:02] - Chris Kunitz was released.
[2018-09-10 13:05:02] - Flyers paid 0 $ to release Chris Kunitz.
[2018-09-10 13:04:23] - Jeff Glass was released.
[2018-09-10 13:04:23] - Flyers paid 0 $ to release Jeff Glass.
[2018-09-10 13:04:19] - Jared Boll was released.
[2018-09-10 13:04:19] - Flyers paid 0 $ to release Jared Boll.
[2018-09-10 13:04:14] - Ales Hemsky was released.
[2018-09-10 13:04:14] - Flyers paid 0 $ to release Ales Hemsky.
[2018-09-08 20:46:10] - TRADE : From Stars to Flyers : John Carlson (80), Y:3-RND:1-FLA, Y:4-RND:2-FLA.
[2018-09-08 20:46:10] - TRADE : From Flyers to Stars : Brandon Carlo (73), Ryan Kesler (74), Y:3-RND:1-DAL.
[2018-08-29 21:33:01] - Valentin Zykov was added to Flyers.
[2018-08-29 21:31:09] - Philippe Myers was added to Flyers.
[2018-08-29 20:48:40] - Cayden Primeau has been added to Flyers.
[2018-08-29 20:47:46] - Adam Ruzicka has been added to Flyers.
[2018-08-29 20:47:11] - Hudson Elynuik has been added to Flyers.
[2018-08-29 20:35:42] - Maksim Sushko has been added to Flyers.
[2018-08-29 20:35:19] - Antoine Morand has been added to Flyers.
[2018-08-29 20:34:59] - Maksim Zhukov has been added to Flyers.
[2018-08-29 20:21:46] - Tyler Benson has been added to Flyers.
[2018-08-29 20:21:10] - Jack Studnicka has been added to Flyers.
[2018-08-29 20:20:43] - Phillippe Myers has been added to Flyers.
[2018-08-19 21:51:03] - Filip Johansson has been added to Flyers.
[2018-08-19 21:50:31] - Benoit-Olivier Groulx has been added to Flyers.
[2018-08-19 21:49:50] - Ryan Merkley has been added to Flyers.
[2018-08-19 21:34:53] - Joe Veleno has been added to Flyers.
[2018-08-19 21:34:37] - Tye Smith has been added to Flyers.
[2018-08-19 21:31:44] - Quinn Hughues has been added to Flyers.
[2018-06-18 18:08:00] - Phantoms was eliminated at round 4 of year 1.



[2019-02-21 20:00:36] Current fund for Flyers is under 0 $.
[2019-02-20 21:03:50] Current fund for Flyers is under 0 $.
[2019-02-20 19:28:51] Current fund for Flyers is under 0 $.
[2019-02-20 19:28:50] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2019-02-20 19:28:43] Current fund for Flyers is under 0 $.
[2019-02-19 21:54:27] Current fund for Flyers is under 0 $.
[2019-02-19 21:53:33] Last 7 Days Farm Star : 1 - Sam Bennett of Condors (4-6-10) / 2 - Troy Stecher of Phantoms (3-8-11) / 3 - Matt Calvert of Condors (1-7-8)
[2019-02-18 23:16:07] Current fund for Flyers is under 0 $.
[2019-02-15 21:18:45] Current fund for Flyers is under 0 $.
[2019-02-15 21:08:27] Current fund for Flyers is under 0 $.
[2019-02-15 21:06:44] Philippe Myers from Phantoms has scored a Hat Trick!
[2019-02-14 21:50:05] Jordan Weal from Phantoms is back from Exhaustion.
[2019-02-14 00:07:38] Current fund for Flyers is under 0 $.
[2019-02-14 00:07:03] Last 7 Days Pro Star : 1 - Antti Raanta of Flyers (0,951) / 2 - Juuse Saros of Blackhawks (0,943) / 3 - Taylor Hall of Panthers (4-1-5)
[2019-02-14 00:07:03] Jordan Weal from Phantoms is injured from Exhaustion.
[2019-02-12 22:28:32] Current fund for Flyers is under 0 $.
[2019-02-12 22:28:31] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2019-02-12 22:28:24] Current fund for Flyers is under 0 $.
[2019-02-12 21:15:19] Current fund for Flyers is under 0 $.
[2019-02-12 18:28:51] Current fund for Flyers is under 0 $.
[2019-02-12 17:57:47] Current fund for Flyers is under 0 $.
[2019-02-12 17:40:15] Current fund for Flyers is under 0 $.
[2019-02-12 10:45:50] Current fund for Flyers is under 0 $.
[2019-02-12 10:43:28] Current fund for Flyers is under 0 $.
[2019-02-12 10:43:27] TRADE : From Sharks to Flyers : Jakub Voracek (86).
[2019-02-12 10:43:27] TRADE : From Flyers to Sharks : Kyle Okposo (77), Antoine Morand (P), Cayden Primeau (P), Y:3-RND:1-ANA, Y:3-RND:3-DAL.
[2019-02-11 22:53:33] Current fund for Flyers is under 0 $.
[2019-02-11 22:52:21] Jordan Weal from Phantoms has scored a Hat Trick!
[2019-02-08 21:02:20] Current fund for Flyers is under 0 $.
[2019-02-08 20:58:21] Current fund for Flyers is under 0 $.
[2019-02-08 20:58:20] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2019-02-08 20:58:12] Current fund for Flyers is under 0 $.
[2019-02-07 21:45:22] Current fund for Flyers is under 0 $.
[2019-02-06 20:59:28] Current fund for Flyers is under 0 $.
[2019-02-06 13:19:43] Current fund for Flyers is under 0 $.
[2019-02-05 21:08:14] Current fund for Flyers is under 0 $.
[2019-02-04 21:01:57] Current fund for Flyers is under 0 $.
[2019-02-04 21:00:33] Current fund for Flyers is under 0 $.
[2019-02-04 21:00:32] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2019-02-04 21:00:25] Current fund for Flyers is under 0 $.
[2019-02-01 20:08:15] Current fund for Flyers is under 0 $.



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
26729220323819716235321690112398732535131302115998910801973285252047796510236879678577947230575054312452795820.79%2664782.33%4933181751.35%913181050.44%46190850.77%142782814866211164564
Total Saison Régulière6729220323819716235321690112398732535131302115998910801973285252047796510236879678577947230575054312452795820.79%2664782.33%4933181751.35%913181050.44%46190850.77%142782814866211164564