Flyers

GP: 30 | W: 17 | L: 8 | OTL: 5 | P: 39
GF: 96 | GA: 69 | PP%: 23.36% | PK%: 82.68%
DG: Jonathan Gratton | Morale : 53 | Moyenne d'Équipe : 76
Prochain matchs #355 vs Oilers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joe ThorntonX100.006343808186897675828071557299903661840
2Sebastian AhoXX100.006542849161899383757581607756557661810
3Clayton KellerXXX100.005642848958899781788075607153528961790
4Mika ZibanejadX100.007141888484888872816181697666608561790
5James van RiemsdykX100.006042837683829777505784597974647360780
6Alexander SteenXXX100.006442848275909180667167766985684361770
7Kyle OkposoX100.006643817777879478696967576876636961770
8Nick BoninoXX100.005941858572848675845563897069623961750
9Travis KonecnyXX100.007043808460829775606275637256538161750
10Kevin HayesXXX100.006241867987879279816077727562587761730
11Cody EakinX100.006442847768829670825661846868595461720
12Nolan PatrickX100.006342787979828980815864607052519361720
13Jaccob SlavinX99.006241927279919775306258916959605761760
14Brian DumoulinX100.007042897782869771305455876859606161750
15Darnell NurseX100.007945808286899772306056806957588661750
16Ian ColeX100.007245756779808375305957866766606761740
17Sami VatanenX100.007143858263908981307055796663575161740
18Esa LindellX100.006842897081909676306057796856556461730
Rayé
1Valentin Zykov (R)X100.006644687581619277506870606750507625730
2Marcus FolignoX100.008445687187779369675658706666605220680
MOYENNE D'ÉQUIPE99.95674382797685927659646772706560665776
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Antti Raanta99.00848888799195949296828160723660840
2Antti Niemi100.00767385867983838081747483802361780
Rayé
1Alex Stalock100.00787886788383818482767557684720760
MOYENNE D'ÉQUIPE99.6779808681848786858677776773354779
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bruce Cassidy69929386776266CAN5244,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Clayton KellerFlyersC/LW/RW3014264081203831125388511.20%962820.9471522341110000410245.76%59349021.2700000514
2Sebastian AhoFlyersC/LW30142640111003022128447410.94%1556618.876121824109000042144.93%69379001.4125000052
3Joe ThorntonFlyersC301419334420454474153018.92%956518.86681416107000054051.65%78694001.1701000131
4Kevin HayesFlyersC/LW/RW3081321146037339330508.60%650816.9433610800003431142.11%192410000.8305000000
5Mika ZibanejadFlyersC30516211310034417227506.94%1248116.061781090000020056.96%481199000.8715000011
6James van RiemsdykFlyersLW3198173255383084184710.71%750516.291239860001121146.15%2685000.6701100230
7Jaccob SlavinFlyersD3041115134033575529127.27%5986628.8725791230111121200.00%0829000.3500000010
8Alexander SteenFlyersC/LW/RW30561136037247722416.49%1640913.64000081014781148.72%39126000.5400000101
9Cody EakinFlyersC30639180334239102115.38%1648216.10303107102261111047.24%381410000.3700000011
10Sami VatanenFlyersD3018921002722367112.78%1245715.241561612100004000.00%0812000.3900000000
11Darnell NurseFlyersD302681020036413319136.06%3363321.1210117000176010.00%0525000.2500000011
12Brian DumoulinFlyersD30257810025423121166.45%4365721.92000050003122000.00%0237000.2100000002
13Ian ColeFlyersD3015642802828171085.88%3451017.0200001000066000.00%0215000.2300000000
14Nick BoninoFlyersC/LW3033612022264320286.98%1638012.670000010161161061.29%311415000.3200000010
15Travis KonecnyFlyersLW/RW30156326037107610391.32%330910.3200013000000045.00%20185000.3913000000
16Esa LindellFlyersD3013440016222012125.00%2042314.11101271000023000.00%018000.1900000000
17Kyle OkposoFlyersRW30303-32602094321236.98%32618.7300018000002060.00%5130000.2300000100
18Nolan PatrickFlyersC30213-218020132814177.14%42367.8700000000001048.18%11034000.2500000001
19Valentin ZykovFlyersRW2000000112000.00%0136.620000000000000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne5439516425997263555753810763675778.83%317889616.3832578914310082352583116751.38%2026221212020.58420100101714
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Antti RaantaFlyers2615650.9382.0515780054874398210.52917264614
2Antti NiemiFlyers42200.9242.47243001013164001.0003426001
Stats d'équipe Total ou en Moyenne3017850.9362.11182100641005462210.600203030615


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Alex StalockFlyersG301987-07-28No191 Lbs6 ft0NoNoNo1Sans RestrictionPro & Farm750,000$750,000$485,294$NoLien
Alexander SteenFlyersC/LW/RW331984-03-01No211 Lbs6 ft0NoNoNo3Sans RestrictionPro & Farm5,750,000$5,750,000$3,720,588$No5,750,000$5,750,000$Lien
Antti NiemiFlyersG341983-08-29No215 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm900,000$900,000$582,353$NoLien
Antti RaantaFlyersG281989-05-12No195 Lbs6 ft0NoNoNo3Sans RestrictionPro & Farm4,250,000$4,250,000$2,750,000$No4,250,000$4,250,000$Lien
Brian DumoulinFlyersD261991-09-06No207 Lbs6 ft4NoNoNo5Contrat d'EntréePro & Farm4,100,000$4,100,000$2,652,941$No4,100,000$4,100,000$4,100,000$4,100,000$Lien
Clayton KellerFlyersC/LW/RW191998-07-29No170 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm885,833$885,833$573,186$No885,833$Lien
Cody EakinFlyersC261991-05-24No190 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm900,000$900,000$582,353$NoLien
Darnell NurseFlyersD221995-02-04No221 Lbs6 ft4NoNoNo2Contrat d'EntréePro & Farm3,200,000$3,200,000$2,070,588$No3,200,000$Lien
Esa LindellFlyersD231994-05-23No213 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm2,200,000$2,200,000$1,423,529$NoLien
Ian ColeFlyersD281989-02-21No219 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm4,250,000$4,250,000$2,750,000$No4,250,000$4,250,000$Lien
Jaccob SlavinFlyersD231994-05-01No205 Lbs6 ft3NoNoNo7Contrat d'EntréePro & Farm5,300,000$5,300,000$3,429,412$No5,300,000$5,300,000$5,300,000$5,300,000$5,300,000$5,300,000$Lien
James van RiemsdykFlyersLW281989-05-04No217 Lbs6 ft3NoNoNo5Sans RestrictionPro & Farm7,000,000$7,000,000$4,529,412$No7,000,000$7,000,000$7,000,000$7,000,000$Lien
Joe ThorntonFlyersC381979-07-02No220 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm6,000,000$6,000,000$3,882,353$NoLien
Kevin HayesFlyersC/LW/RW251992-05-08No217 Lbs6 ft5NoNoNo1Contrat d'EntréePro & Farm5,175,000$5,175,000$3,348,529$NoLien
Kyle OkposoFlyersRW291988-04-16No220 Lbs6 ft0NoNoNo5Sans RestrictionPro & Farm6,000,000$6,000,000$3,882,353$No6,000,000$6,000,000$6,000,000$6,000,000$Lien
Marcus FolignoFlyersLW261991-08-10No232 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm2,875,000$2,875,000$1,860,294$No2,875,000$2,875,000$Lien
Mika ZibanejadFlyersC241993-04-18No227 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm5,350,000$5,350,000$3,461,765$No5,350,000$5,350,000$5,350,000$Lien
Nick BoninoFlyersC/LW291988-04-20No196 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm4,100,000$4,100,000$2,652,941$No4,100,000$Lien
Nolan PatrickFlyersC191998-09-19No198 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm925,000$925,000$598,529$No925,000$Lien
Sami VatanenFlyersD261991-06-03No185 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm4,875,000$4,875,000$3,154,412$No4,875,000$Lien
Sebastian AhoFlyersC/LW201997-07-26No172 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm925,000$925,000$598,529$NoLien
Travis KonecnyFlyersLW/RW201997-03-11No175 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm894,166$894,166$578,578$NoLien
Valentin ZykovFlyersRW221995-05-15Yes224 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$750,000$485,294$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2326.00205 Lbs6 ft12.483,363,261$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
77,354,999$58,860,833$44,875,000$27,750,000$22,400,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1James van RiemsdykJoe ThorntonClayton Keller35014
2Sebastian AhoMika ZibanejadKevin Hayes30113
3Travis KonecnyCody EakinAlexander Steen20221
4Nick BoninoNolan PatrickKyle Okposo15131
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinDarnell Nurse40023
2Brian DumoulinIan Cole30122
3Sami VatanenEsa Lindell20122
4Jaccob SlavinDarnell Nurse10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1James van RiemsdykJoe ThorntonClayton Keller60005
2Sebastian AhoMika ZibanejadKevin Hayes40005
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinSami Vatanen60005
2Cody EakinEsa Lindell40005
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Cody EakinNick Bonino60140
2Alexander SteenKevin Hayes40140
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinBrian Dumoulin60140
2Ian ColeDarnell Nurse40140
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Cody Eakin60140Jaccob SlavinBrian Dumoulin60140
2Nick Bonino40140Esa LindellDarnell Nurse40140
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Sebastian AhoClayton Keller60014
2Joe ThorntonJames van Riemsdyk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jaccob SlavinBrian Dumoulin60122
2Darnell NurseIan Cole40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
James van RiemsdykSebastian AhoClayton KellerJaccob SlavinSami Vatanen
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick BoninoCody EakinAlexander SteenJaccob SlavinBrian Dumoulin
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
James van Riemsdyk, Travis Konecny, Nick BoninoJames van Riemsdyk, Travis KonecnyNick Bonino
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ian Cole, Esa Lindell, Brian DumoulinIan ColeEsa Lindell, Brian Dumoulin
Tirs de Pénalité
Sebastian Aho, Mika Zibanejad, Kevin Hayes, Travis Konecny, James van Riemsdyk
Gardien
#1 : Antti Raanta, #2 : Antti Niemi


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blackhawks1010000012-11010000012-10000000000000.0001120001002787120351312195120.00%60100.00%042080152.43%40879251.52%21341651.20%20102210178
2Blue Jackets2200000013310110000008171100000052341.0001321340034607519253108013103811545.45%50100.00%042080152.43%40879251.52%21341651.20%412342183616
3Blues21000001642000000000002100000164230.750610160021316027171645022165212325.00%8187.50%042080152.43%40879251.52%21341651.20%452440183919
4Bruins2010000157-21010000034-11000000123-110.25051015001131722026255702416338112.50%7271.43%042080152.43%40879251.52%21341651.20%422446203616
5Capitals32100000761211000004401100000032140.667713200041201055024310952024531218.33%120100.00%042080152.43%40879251.52%21341651.20%653762295224
6Devils2010010025-31010000013-21000010012-110.250235000200732429200692512371218.33%6266.67%042080152.43%40879251.52%21341651.20%442542153317
7Flames11000000431000000000001100000043121.00046100020203117410036121021200.00%5180.00%042080152.43%40879251.52%21341651.20%2112229156
8Golden Knights11000000211110000002110000000000021.000224001100311013804119826200.00%40100.00%042080152.43%40879251.52%21341651.20%2010218179
9Islanders522000011012-22110000045-13110000167-150.500101929103611200755966617854508321419.05%25772.00%042080152.43%40879251.52%21341651.20%10766114468241
10Jets11000000413110000004130000000000021.00046100012103291211039118234125.00%40100.00%142080152.43%40879251.52%21341651.20%2113219168
11Lightning11000000321000000000001100000032121.000358000210293131304091416200.00%6183.33%142080152.43%40879251.52%21341651.20%189239188
12Maple Leafs210010001073100010004311100000064241.0001019290015318034202426820103211327.27%5180.00%042080152.43%40879251.52%21341651.20%442742183316
13Panthers2110000010460000000000021100000104620.5001020300014506722271806325143411436.36%7185.71%042080152.43%40879251.52%21341651.20%402446183316
14Penguins3210000013672200000012481010000012-140.66713203300724010431393407024396018738.89%17382.35%042080152.43%40879251.52%21341651.20%613363295426
15Sharks1000000123-11000000123-10000000000010.50024600011042151116329131211100.00%6183.33%042080152.43%40879251.52%21341651.20%20112510189
16Stars10000010431000000000001000001043121.00045900021141131810343138185120.00%4250.00%042080152.43%40879251.52%21341651.20%2313219199
Total3015801114966927147501001453114168300113513813390.6509616426010263533510693773443452310063172635561373223.36%1272282.68%242080152.43%40879251.52%21341651.20%639368661281525255
_Since Last GM Reset3015801114966927147501001453114168300113513813390.6509616426010263533510693773443452310063172635561373223.36%1272282.68%242080152.43%40879251.52%21341651.20%639368661281525255
_Vs Conference221170110273522110540100036241212630010237289270.61473130203102027253805278262262137332141893861062624.53%901781.11%142080152.43%40879251.52%21341651.20%465271484205380184
_Vs Division158500101453213853000002917127320010116151180.60045761211017151315571991761826492136135271741824.32%651281.54%042080152.43%40879251.52%21341651.20%320186326139258126

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
3039L1961642601069100631726355610
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3015811149669
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
147510014531
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
168301135138
Derniers 10 Matchs
WLOTWOTL SOWSOL
440011
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1373223.36%1272282.68%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
377344345232635335
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
42080152.43%40879251.52%21341651.20%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
639368661281525255


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2018-10-1215Penguins3Flyers6WSommaire du Match
6 - 2018-10-1425Flyers5Blue Jackets2WSommaire du Match
9 - 2018-10-1736Capitals3Flyers2LSommaire du Match
12 - 2018-10-2052Islanders2Flyers3WSommaire du Match
15 - 2018-10-2368Flyers1Penguins2LSommaire du Match
18 - 2018-10-2674Devils3Flyers1LSommaire du Match
20 - 2018-10-2885Flyers1Devils2LXSommaire du Match
23 - 2018-10-31100Blue Jackets1Flyers8WSommaire du Match
24 - 2018-11-01106Flyers3Capitals2WSommaire du Match
29 - 2018-11-06122Flyers3Islanders1WSommaire du Match
31 - 2018-11-08133Maple Leafs3Flyers4WXSommaire du Match
33 - 2018-11-10139Flyers6Maple Leafs4WSommaire du Match
36 - 2018-11-13151Flyers5Blues2WSommaire du Match
39 - 2018-11-16162Sharks3Flyers2LXXSommaire du Match
42 - 2018-11-19173Flyers2Islanders3LXXSommaire du Match
44 - 2018-11-21186Islanders3Flyers1LSommaire du Match
46 - 2018-11-23195Flyers3Lightning2WSommaire du Match
48 - 2018-11-25205Penguins1Flyers6WSommaire du Match
52 - 2018-11-29219Flyers1Blues2LXXSommaire du Match
54 - 2018-12-01231Jets1Flyers4WSommaire du Match
58 - 2018-12-05241Flyers8Panthers1WSommaire du Match
62 - 2018-12-09255Blackhawks2Flyers1LSommaire du Match
65 - 2018-12-12269Flyers4Stars3WXXSommaire du Match
68 - 2018-12-15279Flyers4Flames3WSommaire du Match
69 - 2018-12-16285Capitals1Flyers2WSommaire du Match
73 - 2018-12-20300Bruins4Flyers3LSommaire du Match
75 - 2018-12-22310Flyers2Bruins3LXXSommaire du Match
77 - 2018-12-24322Flyers2Panthers3LSommaire du Match
79 - 2018-12-26329Golden Knights1Flyers2WSommaire du Match
83 - 2018-12-30345Flyers1Islanders3LSommaire du Match
86 - 2019-01-02355Oilers-Flyers-
89 - 2019-01-05369Flyers-Kings-
91 - 2019-01-07378Capitals-Flyers-
94 - 2019-01-10394Flyers-Oilers-
97 - 2019-01-13402Blues-Flyers-
101 - 2019-01-17421Stars-Flyers-
104 - 2019-01-20429Flyers-Maple Leafs-
106 - 2019-01-22441Flyers-Golden Knights-
109 - 2019-01-25451Flyers-Devils-
110 - 2019-01-26455Senateurs-Flyers-
114 - 2019-01-30474Flyers-Predateurs-
115 - 2019-01-31479Lightning-Flyers-
118 - 2019-02-03491Flyers-Avalanche-
120 - 2019-02-05498Flyers-Senateurs-
122 - 2019-02-07504Canadiens-Flyers-
125 - 2019-02-10517Flyers-Devils-
127 - 2019-02-12526Lightning-Flyers-
129 - 2019-02-14540Flyers-Ducks-
133 - 2019-02-18552Avalanche-Flyers-
138 - 2019-02-23574Sharks-Flyers-
142 - 2019-02-27593Flyers-Penguins-
143 - 2019-02-28598Kings-Flyers-
147 - 2019-03-04618Predateurs-Flyers-
149 - 2019-03-06625Flyers-Capitals-
152 - 2019-03-09640Flyers-Penguins-
153 - 2019-03-10646Canadiens-Flyers-
157 - 2019-03-14660Flyers-Blue Jackets-
159 - 2019-03-16669Ducks-Flyers-
161 - 2019-03-18679Flyers-Canadiens-
163 - 2019-03-20692Flyers-Jets-
165 - 2019-03-22696Flames-Flyers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
167 - 2019-03-24702Flyers-Sharks-
170 - 2019-03-27718Devils-Flyers-
173 - 2019-03-30729Flyers-Blue Jackets-
176 - 2019-04-02741Flyers-Bruins-
177 - 2019-04-03744Islanders-Flyers-
180 - 2019-04-06765Panthers-Flyers-
187 - 2019-04-13788Bruins-Flyers-
189 - 2019-04-15799Flyers-Canadiens-
193 - 2019-04-19813Blues-Flyers-
197 - 2019-04-23827Flyers-Senateurs-
199 - 2019-04-25836Senateurs-Flyers-
201 - 2019-04-27845Flyers-Lightning-
206 - 2019-05-02858Penguins-Flyers-
208 - 2019-05-04865Flyers-Blackhawks-
211 - 2019-05-07878Flyers-Sharks-
213 - 2019-05-09888Maple Leafs-Flyers-
217 - 2019-05-13910Devils-Flyers-
222 - 2019-05-18931Panthers-Flyers-
227 - 2019-05-23947Flyers-Capitals-
230 - 2019-05-26958Blue Jackets-Flyers-
235 - 2019-05-31974Blue Jackets-Flyers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000200040001000
Prix des Billets1601007550300
Assistance44,91337,85313,11128,1747,710
Attendance PCT53.47%54.08%46.83%50.31%55.07%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
27 9412 - 52.29% 1,478,061$20,692,855$18000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
28,765,023$ 77,354,999$ 76,786,249$ 0$ 0$
Cap Salarial Par JourCap salarial à ce jourTaxe de Luxe TotaleJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
77,354,999$ 27,353,235$ 0$ 23 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
39,907,649$ 154 341,828$ 52,641,512$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
53,665,541$ 77,354,999$ -2,478,864$ -16,236,756$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
Sebastian AhoAGE:20PO:76OV:81
Clayton KellerAGE:19PO:89OV:79
James van RiemsdykAGE:28PO:73OV:78
Alexander SteenAGE:33PO:43OV:77
Travis KonecnyAGE:20PO:81OV:75
Nick BoninoAGE:29PO:39OV:75
Kevin HayesAGE:25PO:77OV:73
Marcus FolignoAGE:26PO:52OV:68
Jordan WealAGE:25PO:63OV:67
Joe ThorntonAGE:38PO:36OV:84
Sebastian AhoAGE:20PO:76OV:81
Clayton KellerAGE:19PO:89OV:79
Mika ZibanejadAGE:24PO:85OV:79
Alexander SteenAGE:33PO:43OV:77
Nick BoninoAGE:29PO:39OV:75
Kevin HayesAGE:25PO:77OV:73
Nolan PatrickAGE:19PO:93OV:72
Cody EakinAGE:26PO:54OV:72
Jordan WealAGE:25PO:63OV:67
Clayton KellerAGE:19PO:89OV:79
Kyle OkposoAGE:29PO:69OV:77
Alexander SteenAGE:33PO:43OV:77
Travis KonecnyAGE:20PO:81OV:75
Kevin HayesAGE:25PO:77OV:73
*Valentin ZykovAGE:22PO:76OV:73
Jordan WealAGE:25PO:63OV:67

Défense #1Défense #2Gardien
Jaccob SlavinAGE:23PO:57OV:76
Darnell NurseAGE:22PO:86OV:75
Brian DumoulinAGE:26PO:61OV:75
Ian ColeAGE:28PO:67OV:74
Sami VatanenAGE:26PO:51OV:74
Esa LindellAGE:23PO:64OV:73
Thomas ChabotAGE:20PO:83OV:70
Troy StecherAGE:23PO:43OV:68
Jordan SchmaltzAGE:23PO:78OV:60
*Philippe MyersAGE:20PO:44OV:60
Antti RaantaAGE:28PO:36OV:84
Antti NiemiAGE:34PO:23OV:78
Alex StalockAGE:30PO:47OV:76

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Adam RuzickaFlyers2018109
Antoine MorandFlyers201885
Benoit-Olivier GroulxFlyers201837
Cayden PrimeauFlyers2018119
Elias PeterssonFlyers20175
Filip JohanssonFlyers201847
Glen GawdinFlyers
Hudson ElynuikFlyers2018107
Ilya SamsonovFlyers201522
Jack StudnickaFlyers201861
Joe VelenoFlyers201818
Maksim SushkoFlyers201895
Maksim ZhukovFlyers201883
Morgan FrostFlyers201727
Quinn HughuesFlyers201810
Ryan MerkleyFlyers201835
Tye SmithFlyers201815
Tyler BensonFlyers201871
Vitaly AbramovFlyers201665

Choix au Repêchage

Année R1R2R3R4R5
3PHI FLA ANA PHI NHS ANA PHI ANA DAL PHI ANA DAL PHI ANA DAL
4PHI EDM PHI FLA PHI PHI PHI
5PHI PHI PHI PHI PHI
6PHI PHI PHI PHI PHI
7PHI PHI PHI PHI PHI



[2018-11-21 21:48:09] - New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] - New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-16 22:19:02] - New Record for Team's Most Hits (31) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Points (23) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Assists (15) in 1 Game for Flyers!
[2018-10-28 00:36:55] - New Record for Team's Most Goals (8) in 1 Game for Flyers!
[2018-10-16 22:00:19] - TRADE : From Penguins to Flyers : James van Riemsdyk (78), Alex Stalock (77).
[2018-10-16 22:00:19] - TRADE : From Flyers to Penguins : Brandon Saad (71), Michal Neuvirth (78), Y:3-RND:2-DAL.
[2018-10-03 20:42:40] - Cody Eakin was added to Flyers.
[2018-10-03 20:42:22] - Antti Niemi was added to Flyers.
[2018-10-01 23:41:34] - Nick Bonino was added to Flyers.
[2018-10-01 23:41:26] - Joe Thornton was added to Flyers.
[2018-09-24 22:25:17] - TRADE : From Stars to Flyers : Clayton Keller (79).
[2018-09-24 22:25:17] - TRADE : From Flyers to Stars : Cale Makar (P), Jake Bean (P).
[2018-09-23 19:32:02] - TRADE : From Flyers to Penguins : John Carlson (80).
[2018-09-23 19:32:02] - TRADE : From Penguins to Flyers : Darnell Nurse (75), Y:4-RND:1-EDM, Y:3-RND:2-NHS.
[2018-09-10 13:05:23] - Troy Brouwer was released.
[2018-09-10 13:05:23] - Flyers paid 0 $ to release Troy Brouwer.
[2018-09-10 13:05:18] - Shawn Matthias was released.
[2018-09-10 13:05:18] - Flyers paid 0 $ to release Shawn Matthias.
[2018-09-10 13:05:07] - Jori Lehtera was released.
[2018-09-10 13:05:07] - Flyers paid 0 $ to release Jori Lehtera.
[2018-09-10 13:05:02] - Chris Kunitz was released.
[2018-09-10 13:05:02] - Flyers paid 0 $ to release Chris Kunitz.
[2018-09-10 13:04:23] - Jeff Glass was released.
[2018-09-10 13:04:23] - Flyers paid 0 $ to release Jeff Glass.
[2018-09-10 13:04:19] - Jared Boll was released.
[2018-09-10 13:04:19] - Flyers paid 0 $ to release Jared Boll.
[2018-09-10 13:04:14] - Ales Hemsky was released.
[2018-09-10 13:04:14] - Flyers paid 0 $ to release Ales Hemsky.
[2018-09-08 20:46:10] - TRADE : From Stars to Flyers : John Carlson (80), Y:3-RND:1-FLA, Y:4-RND:2-FLA.
[2018-09-08 20:46:10] - TRADE : From Flyers to Stars : Brandon Carlo (73), Ryan Kesler (74), Y:3-RND:1-DAL.
[2018-08-29 21:33:01] - Valentin Zykov was added to Flyers.
[2018-08-29 21:31:09] - Philippe Myers was added to Flyers.
[2018-08-29 20:48:40] - Cayden Primeau has been added to Flyers.
[2018-08-29 20:47:46] - Adam Ruzicka has been added to Flyers.
[2018-08-29 20:47:11] - Hudson Elynuik has been added to Flyers.
[2018-08-29 20:35:42] - Maksim Sushko has been added to Flyers.
[2018-08-29 20:35:19] - Antoine Morand has been added to Flyers.
[2018-08-29 20:34:59] - Maksim Zhukov has been added to Flyers.
[2018-08-29 20:21:46] - Tyler Benson has been added to Flyers.
[2018-08-29 20:21:10] - Jack Studnicka has been added to Flyers.
[2018-08-29 20:20:43] - Phillippe Myers has been added to Flyers.
[2018-08-19 21:51:03] - Filip Johansson has been added to Flyers.
[2018-08-19 21:50:31] - Benoit-Olivier Groulx has been added to Flyers.
[2018-08-19 21:49:50] - Ryan Merkley has been added to Flyers.
[2018-08-19 21:34:53] - Joe Veleno has been added to Flyers.
[2018-08-19 21:34:37] - Tye Smith has been added to Flyers.
[2018-08-19 21:31:44] - Quinn Hughues has been added to Flyers.
[2018-06-18 18:08:00] - Phantoms was eliminated at round 4 of year 1.
[2018-05-28 20:21:26] - Flyers was eliminated at round 1 of year 1.
[2018-05-09 23:40:32] - New Record for Team's Most Shots (50) in 1 Game for Flyers!
[2018-04-30 22:26:10] - New Record for Team's Most Penalties Minutes (25) in 1 Game for Flyers!



[2018-12-10 20:52:58] Current fund for Flyers is under 0 $.
[2018-12-10 12:10:58] Current fund for Flyers is under 0 $.
[2018-12-10 12:05:55] Current fund for Flyers is under 0 $.
[2018-12-09 23:09:50] Current fund for Flyers is under 0 $.
[2018-12-07 22:27:01] Current fund for Flyers is under 0 $.
[2018-12-07 22:22:14] Thomas Chabot from Phantoms has scored a Hat Trick!
[2018-12-06 22:35:09] Current fund for Flyers is under 0 $.
[2018-12-05 21:04:09] Current fund for Flyers is under 0 $.
[2018-12-05 20:52:35] Current fund for Flyers is under 0 $.
[2018-12-05 20:52:34] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2018-12-05 20:52:28] Current fund for Flyers is under 0 $.
[2018-12-04 23:45:01] Current fund for Flyers is under 0 $.
[2018-12-04 23:44:27] Thomas Chabot from Phantoms has scored a Hat Trick!
[2018-12-03 21:39:33] Current fund for Flyers is under 0 $.
[2018-12-02 22:58:47] Current fund for Flyers is under 0 $.
[2018-11-30 21:20:15] Current fund for Flyers is under 0 $.
[2018-11-30 21:19:41] Jordan Schmaltz from Phantoms has scored a Hat Trick!
[2018-11-29 22:38:41] Current fund for Flyers is under 0 $.
[2018-11-28 21:17:26] Current fund for Flyers is under 0 $.
[2018-11-27 22:50:24] Current fund for Flyers is under 0 $.
[2018-11-26 20:48:02] Successfully loaded Flyers lines done with STHS Client - 3.1.5.5
[2018-11-23 23:34:37] Flyers lines for next game are empty. Current rosters/lines are not erased.
[2018-11-22 22:43:42] Current fund for Flyers is under 0 $.
[2018-11-22 22:43:18] Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2018-11-22 22:43:18] Game 250 - Philippe Myers from Phantoms is injured (Broken Bone (Right Ankle)) and is out for 2 months.
[2018-11-21 21:48:09] Phantoms lines for next game are empty. Current rosters/lines are not erased. But, Flyers lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[2018-11-21 21:48:09] New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-21 21:48:09] New Record for Team's Most Points (24) in 1 Game for Flyers!
[2018-11-21 21:48:09] New Record for Team's Most Assists (16) in 1 Game for Flyers!
[2018-11-21 21:48:09] Clayton Keller from Flyers has scored a Hat Trick!
[2018-11-16 22:19:02] New Record for Team's Most Hits (31) in 1 Game for Flyers!



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
23015801114966927147501001453114168300113513813399616426010263533510693773443452310063172635561373223.36%1272282.68%242080152.43%40879251.52%21341651.20%639368661281525255
Total Saison Régulière3015801114966927147501001453114168300113513813399616426010263533510693773443452310063172635561373223.36%1272282.68%242080152.43%40879251.52%21341651.20%639368661281525255