Flyers

GP: 4 | W: 1 | L: 2 | OTL: 1 | P: 3
GF: 12 | GA: 14 | PP%: 25.00% | PK%: 66.67%
DG: Jonathan Gratton | Morale : 46 | Moyenne d'Équipe : 77
Prochain matchs #58 vs Bruins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mika ZibanejadX100.008241778083879578868179808271738447840
2Sebastian AhoX100.006538857870869577808579817663697447830
3Elias PetterssonX100.005936908276848380758182638461668847810
4Jakub VoracekX100.005338858183849182548373527880726947800
5James van RiemsdykX100.005837877687817975537382548078747347790
6Jake DeBruskXX100.006337877572818274537081627865678347770
7Travis KonecnyX100.006549827865799576527375617763658147760
8Clayton KellerXXX100.005338868164839579577766538261668747750
9Alexander SteenXX100.006737886877817867547165856685754247740
10Nick BoninoX100.005437886977819468816970856679723847740
11Oscar LindbergX100.008440796678736866736766626675685847730
12Valentin ZykovXX100.007040786478665963526162586567647447680
13Mark GiordanoX100.006449687677919274309077956086932547830
14Brian DumoulinX100.008437876488878964307557915075685947780
15Jaccob SlavinX100.006637886985879568307666885769665647770
16Darnell NurseX100.008561647091929468307969775667658547760
17Ian ColeX100.008268566381858462307156895478706647760
18Thomas ChabotX100.007339817880918377308676686163648347740
Rayé
1Cody EakinX100.007637897273798871827075807475715346740
2Troy StecherX100.007739826468859163307456804969654246720
MOYENNE D'ÉQUIPE100.00694281737883877253767173687270664777
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1David Rittich99.00909189858988908988908973774247840
2Antti Raanta100.00777270737675777675777678843947740
Rayé
MOYENNE D'ÉQUIPE99.5084828079838284838284837681414779
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bruce Cassidy82938779807469CAN5334,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jakub VoracekFlyersRW4358020412061115.00%17819.51213412000000025.00%440002.0501000010
2Elias PetterssonFlyersC4437-12066175923.53%17719.28123612000000159.57%9421001.8201000100
3Sebastian AhoFlyersC422410076122616.67%06315.78101611000000041.94%6220001.2700000100
4Clayton KellerFlyersC/LW/RW4022000318170.00%26115.32011211000030044.44%960000.6501000000
5Mark GiordanoFlyersD40220204107910.00%310526.42011216000012000.00%005000.3800000000
6Alexander SteenFlyersLW/RW41010002552220.00%26115.32000000002121066.67%301000.3300000001
7Darnell NurseFlyersD4011160162010.00%55614.170000700000000.00%003000.3500000000
8Jake DeBruskFlyersLW/RW41011004380412.50%26817.02000211000030050.00%221000.2900000000
9James van RiemsdykFlyersLW4011-120343140.00%17719.34000212000000075.00%820000.2600000000
10Mika ZibanejadFlyersC41011008412458.33%15313.3200000000040051.43%3511000.3801000000
11Travis KonecnyFlyersRW4011160256370.00%15112.9200000000000050.00%211000.3900000000
12Brian DumoulinFlyersD4000-120547010.00%68521.3900000000012000.00%005000.0000000000
13Ian ColeFlyersD4000140133220.00%45413.540000000006000.00%000000.0000000000
14Jaccob SlavinFlyersD4000-20041711310.00%99724.430000700007000.00%011000.0000000000
15Nick BoninoFlyersC4000-120157140.00%24611.60000000000110044.74%3810000.0000000000
16Oscar LindbergFlyersLW4000-100313110.00%1379.28000000001400100.00%400000.0000000000
17Thomas ChabotFlyersD40001001611230.00%38521.3000031600003000.00%060000.0000000000
18Valentin ZykovFlyersLW/RW4000-120014000.00%0317.860000000000000.00%001000.0000000000
Stats d'équipe Total ou en Moyenne72121729-1300598814642698.22%44119116.54459271220003831152.11%2612820000.4904000211
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1David RittichFlyers41210.8993.21243001312951000.750440000
Stats d'équipe Total ou en Moyenne41210.8993.21243001312951000.750440000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Alexander SteenFlyersLW/RW331984-03-01No211 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm5,750,000$5,750,000$5,415,344$NoLien
Antti RaantaFlyersG281989-05-12No195 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm4,250,000$4,250,000$4,002,646$NoLien
Brian DumoulinFlyersD261991-09-06No207 Lbs6 ft4NoNoNo4Contrat d'EntréePro & Farm4,100,000$4,100,000$3,861,376$NoLien
Clayton KellerFlyersC/LW/RW191998-07-29No170 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm885,833$885,833$834,277$NoLien
Cody EakinFlyersC261991-05-24No190 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm3,850,000$3,850,000$3,625,926$NoLien
Darnell NurseFlyersD221995-02-04No221 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm3,200,000$3,200,000$3,013,757$NoLien
David RittichFlyersG251992-08-19No206 Lbs6 ft3NoNoNo2Contrat d'EntréePro & Farm2,750,000$2,750,000$2,589,947$NoLien
Elias PetterssonFlyersC181998-11-12No176 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$750,000$706,349$NoLien
Ian ColeFlyersD281989-02-21No219 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm4,250,000$4,250,000$4,002,646$NoLien
Jaccob SlavinFlyersD231994-05-01No207 Lbs6 ft3NoNoNo6Contrat d'EntréePro & Farm5,300,000$5,300,000$4,991,534$NoLien
Jake DeBruskFlyersLW/RW201996-10-17No188 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm863,333$863,333$813,086$NoLien
Jakub VoracekFlyersRW281989-08-15No214 Lbs6 ft2NoNoNo5Sans RestrictionPro & Farm8,250,000$8,250,000$7,769,841$NoLien
James van RiemsdykFlyersLW281989-05-04No217 Lbs6 ft3NoNoNo4Sans RestrictionPro & Farm7,000,000$7,000,000$6,592,593$NoLien
Mark GiordanoFlyersD331983-10-03No200 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm6,750,000$6,750,000$6,357,143$NoLien
Mika ZibanejadFlyersC241993-04-18No213 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm5,350,000$5,350,000$5,038,624$NoLien
Nick BoninoFlyersC291988-04-20No196 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm4,100,000$4,100,000$3,861,376$NoLien
Oscar LindbergFlyersLW251991-10-29No202 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm1,300,000$1,300,000$1,224,339$NoLien
Sebastian AhoFlyersC201997-07-26No176 Lbs6 ft0NoNoNo5Contrat d'EntréePro & Farm8,454,000$8,454,000$7,961,968$NoLien
Thomas ChabotFlyersD201997-01-30No196 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm863,333$863,333$813,086$NoLien
Travis KonecnyFlyersRW201997-03-11No175 Lbs5 ft10NoNoNo5Contrat d'EntréePro & Farm5,500,000$5,500,000$5,179,894$NoLien
Troy StecherFlyersD231994-04-07No186 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm2,325,000$2,325,000$2,189,683$NoLien
Valentin ZykovFlyersLW/RW221995-05-15No220 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$750,000$706,349$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2224.55199 Lbs6 ft12.413,935,977$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
86,591,499$67,704,000$50,704,000$38,604,000$27,504,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1James van RiemsdykElias PetterssonJakub Voracek35014
2Jake DeBruskSebastian AhoTravis Konecny30113
3Alexander SteenMika ZibanejadClayton Keller25122
4Oscar LindbergNick BoninoValentin Zykov10131
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark GiordanoJaccob Slavin40023
2Brian DumoulinThomas Chabot30122
3Ian ColeDarnell Nurse20122
4Jaccob SlavinBrian Dumoulin10131
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1James van RiemsdykElias PetterssonJakub Voracek60005
2Jake DeBruskSebastian AhoClayton Keller40005
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark GiordanoThomas Chabot60005
2Darnell NurseJaccob Slavin40005
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Nick BoninoAlexander Steen60140
2Mika ZibanejadOscar Lindberg40140
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark GiordanoBrian Dumoulin60140
2Ian ColeJaccob Slavin40140
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Nick Bonino60140Mark GiordanoBrian Dumoulin60140
2Sebastian Aho40140Jaccob SlavinIan Cole40140
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Mika ZibanejadJakub Voracek60113
2Elias PetterssonJames van Riemsdyk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark GiordanoThomas Chabot60113
2Darnell NurseJaccob Slavin40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
James van RiemsdykElias PetterssonJakub VoracekMark GiordanoThomas Chabot
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Oscar LindbergNick BoninoAlexander SteenJaccob SlavinBrian Dumoulin
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Elias Pettersson, Sebastian Aho, Jakub VoracekMika Zibanejad, James van RiemsdykAlexander Steen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mark Giordano, Thomas Chabot, Jaccob SlavinDarnell NurseThomas Chabot, Darnell Nurse
Tirs de Pénalité
Elias Pettersson, Mika Zibanejad, Clayton Keller, Jakub Voracek, Jake DeBrusk
Gardien
#1 : David Rittich, #2 : Antti Raanta


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blue Jackets1010000023-11010000023-10000000000000.000235001100357151303614813300.00%4175.00%0509552.63%539754.64%336650.00%1811239178
2Devils2010000168-21000000145-11010000023-110.25067130051007741221445419143511436.36%7357.14%0509552.63%539754.64%336650.00%462743193518
3Penguins11000000431000000000001100000043121.00047110010303413111003911811200.00%4175.00%0509552.63%539754.64%336650.00%1911238178
Total412000011214-22010000168-22110000066030.375121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034
_Since Last GM Reset412000011214-22010000168-22110000066030.375121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034
_Vs Conference412000011214-22010000168-22110000066030.375121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034
_Vs Division412000011214-22010000168-22110000066030.375121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
43W112172914612944305900
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
41200011214
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
201000168
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
211000066
Derniers 10 Matchs
WLOTWOTL SOWSOL
120001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
16425.00%15566.67%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
61483747230
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
509552.63%539754.64%336650.00%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
844990377034


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-10-0615Devils5Flyers4LXXSommaire du Match
5 - 2019-10-0824Flyers2Devils3LSommaire du Match
7 - 2019-10-1035Blue Jackets3Flyers2LSommaire du Match
10 - 2019-10-1348Flyers4Penguins3WSommaire du Match
12 - 2019-10-1558Bruins-Flyers-
14 - 2019-10-1769Flyers-Bruins-
16 - 2019-10-1980Penguins-Flyers-
17 - 2019-10-2086Flyers-Blue Jackets-
21 - 2019-10-24104Islanders-Flyers-
23 - 2019-10-26112Flyers-Capitals-
25 - 2019-10-28126Capitals-Flyers-
26 - 2019-10-29129Flyers-Islanders-
29 - 2019-11-01149Flyers-Senateurs-
30 - 2019-11-02160Flyers-Capitals-
31 - 2019-11-03164Flyers-Devils-
32 - 2019-11-04168Devils-Flyers-
36 - 2019-11-08191Islanders-Flyers-
40 - 2019-11-12208Flyers-Maple Leafs-
42 - 2019-11-14215Sharks-Flyers-
46 - 2019-11-18233Jets-Flyers-
49 - 2019-11-21249Capitals-Flyers-
51 - 2019-11-23261Flyers-Sharks-
53 - 2019-11-25271Flyers-Panthers-
55 - 2019-11-27278Blackhawks-Flyers-
57 - 2019-11-29291Flyers-Islanders-
59 - 2019-12-01303Flyers-Capitals-
60 - 2019-12-02308Predateurs-Flyers-
64 - 2019-12-06324Capitals-Flyers-
66 - 2019-12-08340Flyers-Panthers-
68 - 2019-12-10350Flyers-Penguins-
70 - 2019-12-12357Stars-Flyers-
72 - 2019-12-14372Blue Jackets-Flyers-
74 - 2019-12-16383Flyers-Maple Leafs-
76 - 2019-12-18391Flyers-Stars-
78 - 2019-12-20402Bruins-Flyers-
79 - 2019-12-21411Flyers-Penguins-
82 - 2019-12-24426Flyers-Jets-
83 - 2019-12-25431Panthers-Flyers-
87 - 2019-12-29451Panthers-Flyers-
89 - 2019-12-31461Flyers-Blackhawks-
91 - 2020-01-02474Penguins-Flyers-
93 - 2020-01-04488Flyers-Lightning-
94 - 2020-01-05495Flyers-Predateurs-
96 - 2020-01-07503Oilers-Flyers-
99 - 2020-01-10516Flyers-Flames-
100 - 2020-01-11526Avalanche-Flyers-
103 - 2020-01-14542Flyers-Senateurs-
104 - 2020-01-15550Golden Knights-Flyers-
107 - 2020-01-18567Flyers-Oilers-
109 - 2020-01-20575Kings-Flyers-
112 - 2020-01-23585Flyers-Bruins-
114 - 2020-01-25599Blue Jackets-Flyers-
117 - 2020-01-28617Blues-Flyers-
119 - 2020-01-30630Flyers-Kings-
120 - 2020-01-31636Flyers-Devils-
122 - 2020-02-02647Lightning-Flyers-
125 - 2020-02-05664Flyers-Ducks-
126 - 2020-02-06670Lightning-Flyers-
130 - 2020-02-10688Flyers-Bruins-
132 - 2020-02-12695Maple Leafs-Flyers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
134 - 2020-02-14704Flyers-Lightning-
136 - 2020-02-16719Ducks-Flyers-
140 - 2020-02-20739Islanders-Flyers-
142 - 2020-02-22747Flyers-Avalanche-
143 - 2020-02-23758Flyers-Islanders-
145 - 2020-02-25767Devils-Flyers-
148 - 2020-02-28780Flyers-Blues-
150 - 2020-03-01791Flames-Flyers-
154 - 2020-03-05813Canadiens-Flyers-
155 - 2020-03-06818Flyers-Golden Knights-
159 - 2020-03-10836Bruins-Flyers-
161 - 2020-03-12845Flyers-Canadiens-
163 - 2020-03-14860Senateurs-Flyers-
164 - 2020-03-15866Flyers-Canadiens-
166 - 2020-03-17876Flyers-Devils-
168 - 2020-03-19888Penguins-Flyers-
172 - 2020-03-23907Senateurs-Flyers-
176 - 2020-03-27929Devils-Flyers-
177 - 2020-03-28936Flyers-Blue Jackets-
183 - 2020-04-03956Canadiens-Flyers-
184 - 2020-04-04959Flyers-Blue Jackets-
187 - 2020-04-07983Maple Leafs-Flyers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000200040001000
Prix des Billets1601007550300
Assistance6,7624,9901,7853,6711,100
Attendance PCT56.35%49.90%44.63%45.89%55.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
39 9154 - 50.86% 1,515,275$3,030,549$18000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
5,272,520$ 86,591,499$ 86,022,749$ 0$ 0$
Cap Salarial Par JourCap salarial à ce jourTaxe de Luxe TotaleJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
86,591,499$ 5,039,716$ 0$ 22 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
59,095,706$ 178 479,320$ 85,318,960$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
86,675,980$ 86,591,499$ -7,256,708$ -34,836,982$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
James van RiemsdykAGE:28PO:73OV:79
Jake DeBruskAGE:20PO:83OV:77
Clayton KellerAGE:19PO:87OV:75
Alexander SteenAGE:33PO:42OV:74
Oscar LindbergAGE:25PO:58OV:73
Valentin ZykovAGE:22PO:74OV:68
Mika ZibanejadAGE:24PO:84OV:84
Sebastian AhoAGE:20PO:74OV:83
Elias PetterssonAGE:18PO:88OV:81
Clayton KellerAGE:19PO:87OV:75
Cody EakinAGE:26PO:53OV:74
Nick BoninoAGE:29PO:38OV:74
Jordan WealAGE:25PO:56OV:69
Jakub VoracekAGE:28PO:69OV:80
Jake DeBruskAGE:20PO:83OV:77
Travis KonecnyAGE:20PO:81OV:76
Clayton KellerAGE:19PO:87OV:75
Alexander SteenAGE:33PO:42OV:74
Valentin ZykovAGE:22PO:74OV:68

Défense #1Défense #2Gardien
Mark GiordanoAGE:33PO:25OV:83
Brian DumoulinAGE:26PO:59OV:78
Jaccob SlavinAGE:23PO:56OV:77
Darnell NurseAGE:22PO:85OV:76
Ian ColeAGE:28PO:66OV:76
Thomas ChabotAGE:20PO:83OV:74
Troy StecherAGE:23PO:42OV:72
Marcus PetterssonAGE:21PO:75OV:71
Philippe MyersAGE:20PO:54OV:67
Jordan SchmaltzAGE:23PO:77OV:63
David RittichAGE:25PO:42OV:84
Antti RaantaAGE:28PO:39OV:74
Michal NeuvirthAGE:29PO:62OV:70

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Adam RuzickaFlyers2018109
Andrew PoturalskiFlyers375
Arthur KaliyevFlyers317
Benoit-Olivier GroulxFlyers201837
Brayden TraceyFlyers335
Carter VerhaegheFlyers365
Drew HellesonFlyers389
Filip JohanssonFlyers201847
Glen GawdinFlyers
Hudson ElynuikFlyers2018107
Ilya SamsonovFlyers201522
Jack StudnickaFlyers201861
Joe VelenoFlyers201818
Kaapo KakkoFlyers32
Maksim SushkoFlyers201895
Maksim ZhukovFlyers201883
Morgan FrostFlyers201727
Pyotr KochetkovFlyers341
Quinn HughuesFlyers201810
Ryan LindgrenFlyers
Ryan MerkleyFlyers201835
Tobias BjornfotFlyers340
Tye SmithFlyers201815
Tyler BensonFlyers201871
Vitaly AbramovFlyers201665

Choix au Repêchage

Année R1R2R3R4R5
4PHI VGS TB. PHI FLA DAL PHI PHI PHI
5PHI PHI VGS PHI PHI PHI
6PHI PHI PHI PHI PHI
7PHI PHI PHI PHI PHI
8PHI PHI PHI PHI PHI



[2019-09-24 20:59:09] - Michal Neuvirth was added to Flyers.
[2019-09-20 21:41:08] - Oscar Lindberg was added to Flyers.
[2019-09-16 21:53:25] - Antti Niemi was released.
[2019-09-16 21:53:25] - Alex Stalock was released.
[2019-09-16 21:53:25] - Joe Thornton was released.
[2019-08-26 22:57:46] - Ryan Lindgren has been added to Flyers.
[2019-08-26 22:29:21] - Flyers drafts Drew Helleson as the #89 overall pick in the Entry Draft of year 3.
[2019-07-12 23:12:27] - Flyers drafts Andrew Poturalski as the #75 overall pick in the Entry Draft of year 3.
[2019-07-12 23:07:08] - Flyers drafts Carter Verhaeghe as the #65 overall pick in the Entry Draft of year 3.
[2019-07-11 23:05:54] - TRADE : From Ducks to Flyers : Mark Giordano (83).
[2019-07-11 23:05:54] - TRADE : From Flyers to Ducks : Marcus Foligno (69), Nolan Patrick (73), Y:3-RND:4-ANA, Y:3-RND:5-ANA, Y:3-RND:5-DAL, Y:3-RND:5-PHI.
[2019-07-03 23:49:49] - Marcus Pettersson has been deleted from Flyers.
[2019-07-03 23:48:01] - Marcus Pettersson was added to Flyers.
[2019-07-03 23:44:45] - Flyers drafts Marcus Pettersson as the #59 overall pick in the Entry Draft of year 3.
[2019-07-03 23:37:27] - Flyers drafts Pyotr Kochetkov as the #41 overall pick in the Entry Draft of year 3.
[2019-07-03 23:37:03] - Flyers drafts Tobias Bjornfot as the #40 overall pick in the Entry Draft of year 3.
[2019-07-03 23:35:29] - Flyers drafts Brayden Tracey as the #35 overall pick in the Entry Draft of year 3.
[2019-07-01 16:04:00] - Flyers drafts Arthur Kaliyev as the #17 overall pick in the Entry Draft of year 3.
[2019-07-01 14:07:24] - Flyers drafts Kaapo Kakko as the #2 overall pick in the Entry Draft of year 3.
[2019-06-19 20:40:48] - TRADE : From Golden Knights to Flyers : Y:4-RND:1-VGS, Y:4-RND:2-DAL, Y:5-RND:2-VGS.
[2019-06-19 20:40:48] - TRADE : From Flyers to Golden Knights : Kevin Hayes (82).
[2019-05-29 12:11:53] - TRADE : From Flyers to Oilers : Sami Vatanen (72), Y:4-RND:1-EDM.
[2019-05-29 12:11:53] - TRADE : From Oilers to Flyers : David Rittich (84), Jake DeBrusk (78).
[2019-05-28 21:55:51] - Elias Pettersson was added to Flyers.
[2019-05-28 21:55:25] - Elias Petersson has been deleted from Flyers.
[2019-05-27 12:41:50] - TRADE : From Flyers to Lightning : Esa Lindell (72).
[2019-05-27 12:41:50] - TRADE : From Lightning to Flyers : Y:4-RND:1-TB..
[2019-05-03 21:54:48] - Phantoms was eliminated at round 2 of year 2.
[2019-05-03 21:54:48] - Flyers was eliminated at round 2 of year 2.
[2019-02-12 10:43:27] - TRADE : From Sharks to Flyers : Jakub Voracek (86).
[2019-02-12 10:43:27] - TRADE : From Flyers to Sharks : Kyle Okposo (77), Antoine Morand (P), Cayden Primeau (P), Y:3-RND:1-ANA, Y:3-RND:3-DAL.



[2019-10-13 20:52:20] Current fund for Flyers is under 0 $.
[2019-10-11 20:37:57] Current fund for Flyers is under 0 $.
[2019-10-10 20:42:40] Current fund for Flyers is under 0 $.
[2019-10-09 21:18:36] Last 7 Days Farm Star : 1 - Joey Anderson of Heat (12-9-21) / 2 - Isac Lundestrom of Heat (6-15-21) / 3 - Marcus Pettersson of Phantoms (3-11-14)
[2019-10-08 20:56:00] Current fund for Flyers is under 0 $.
[2019-10-08 12:35:43] Current fund for Flyers is under 0 $.
[2019-10-07 21:49:09] Current fund for Flyers is under 0 $.
[2019-10-07 16:35:05] Current fund for Flyers is under 0 $.
[2019-10-06 20:44:24] Current fund for Flyers is under 0 $.
[2019-10-06 20:44:01] Marcus Pettersson from Phantoms has scored a Hat Trick!
[2019-10-06 11:06:14] Current fund for Flyers is under 0 $.
[2019-10-04 21:28:56] Current fund for Flyers is under 0 $.
[2019-10-04 21:27:32] Current fund for Flyers is under 0 $.
[2019-10-04 21:25:11] Current fund for Flyers is under 0 $.
[2019-10-04 21:23:30] Current fund for Flyers is under 0 $.
[2019-10-04 21:08:32] Current fund for Flyers is under 0 $.
[2019-10-04 21:07:51] Current fund for Flyers is under 0 $.
[2019-10-04 21:07:50] Successfully loaded Flyers lines done with STHS Client - 3.1.7.7
[2019-10-04 21:07:50] Michal Neuvirth of Flyers was sent to farm.
[2019-10-04 21:07:42] Current fund for Flyers is under 0 $.
[2019-10-04 20:56:17] Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:15] Flyers lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:12] Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:10] Flyers lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:09] Marcus Pettersson from Phantoms is back from Exhaustion.
[2019-10-04 20:56:09] Both Flyers and Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:09] Last 7 Days Farm Star : 1 - Marcus Pettersson of Phantoms (2-9-11) / 2 - Zack Kassian of Marlies (4-2-6) / 3 - Charles Hudon of Marlies (1-5-6)
[2019-10-04 20:56:08] Marcus Pettersson from Phantoms is injured from Exhaustion.
[2019-10-04 20:56:08] Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:07] Philippe Myers from Phantoms is back from Dislocated Patella Injury.
[2019-10-04 20:56:07] Last 30 Days Farm Star : 1 - Marcus Pettersson of Phantoms (7-30-37) / 2 - Sean Kuraly of Marlies (10-12-22) / 3 - Zack Kassian of Marlies (13-6-19)
[2019-10-04 20:56:05] Mika Zibanejad from Flyers is back from Exhaustion.
[2019-10-04 20:56:05] Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:04] Flyers lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:03] Auto Lines Function has been run for Flyers.
[2019-10-04 20:56:03] Auto Roster Partial Function has been run for Flyers.
[2019-10-04 20:56:03] Both Flyers and Phantoms lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:03] Last 7 Days Farm Star : 1 - Markus Granlund of Stars (8-3-11) / 2 - Igor Ozhiganov of Stars (2-7-9) / 3 - Marcus Pettersson of Phantoms (3-8-11)
[2019-10-04 20:56:03] Mika Zibanejad from Flyers is injured from Exhaustion.
[2019-10-04 20:56:02] Flyers lines for next game are empty. Current rosters/lines are not erased.
[2019-10-04 20:56:01] Auto Lines Function has been run for Flyers.
[2019-10-04 20:56:01] Auto Roster Partial Function has been run for Flyers.
[2019-10-04 20:56:01] Phantoms lines for next game are empty. Current rosters/lines are not erased.



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
3412000011214-22010000168-2211000006603121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034
Total Saison Régulière412000011214-22010000168-2211000006603121729007230146614837412944305916425.00%15566.67%0509552.63%539754.64%336650.00%844990377034
Séries
21257000003437-36330000019172624000001520-5103460940013912044012416714904321288422751713.73%431272.09%115533046.97%16633849.11%7316544.24%25915326110519999
Total Séries1257000003437-36330000019172624000001520-5103460940013912044012416714904321288422751713.73%431272.09%115533046.97%16633849.11%7316544.24%25915326110519999