Rampages

GP: 32 | W: 26 | L: 6 | OTL: 0 | P: 52
GF: 199 | GA: 123 | PP%: 46.39% | PK%: 67.57%
DG: Carl Morin | Morale : 70 | Moyenne d'Équipe : 67
Prochain matchs #353 vs Moose
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Drew StaffordX97.007041827480818271745160657281755069700
2Jussi JokinenX99.005941827169777975745557686588692564700
3Phil VaroneX100.005643706065649966676761606152514671680
4Mathieu Joseph (R)X100.005543696068719962506559605950504478670
5Eric FehrX100.006343756382677462784560696473704952660
6Nikolay GoldobinXX100.005941807765698471585558656552518078650
7Jacob JosefsonX100.006341837170786760744454706863577078640
8Laurent Dauphin (R)X100.005346646169678160676157605751517578610
9Alex FormentonX100.005040796265523253535353605450507478570
10Carl GunnarssonX99.006242847075788669305056747372613066700
11Brandon DavidsonX98.008142847878797171304556717456554274690
Rayé
1Mike FisherX62.225540847278783360884656797394803140700
MOYENNE D'ÉQUIPE96.25614278687272746562535767656560516966
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Harri Sateri96.00747792828081797879727251634978750
Rayé
MOYENNE D'ÉQUIPE96.0074779282808179787972725163497875
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dave Camaron67656945777170can581400,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Drew StaffordRampages (COL)RW26343569246034161717211019.88%1360323.2217173433953036551266.67%392824032.2911000822
2Jussi JokinenRampages (COL)LW21253762253353733138458318.12%2253125.317202721810224805365.54%1483121022.3301010366
3Nikolay GoldobinRampages (COL)LW/RW3217223951402720145417311.72%1953716.81681413731013313169.05%423726011.4500000312
4Mike FisherRampages (COL)C16122638900233557102621.05%1237023.147121915581013490173.98%442816002.0501000221
5Jacob JosefsonRampages (COL)C321620362280232687164118.39%1747614.901783210000192065.92%2671619001.5100000222
6Christian FolinAvalancheD24624301416040286230349.68%4466827.8531215127803338820100.00%11840000.9000000011
7Carl GunnarssonRampages (COL)D22425292417523204725318.51%2361327.90310131194011184000.00%02147000.9500001021
8Phil VaroneRampages (COL)C271316294415443061254721.31%848217.87761315710001323161.62%5681513001.2000010013
9Mathieu JosephRampages (COL)RW321216286420352275174916.00%1857517.9858139730224571166.22%741728000.9700000102
10Laurent DauphinRampages (COL)C3211162721475252773243715.07%1449515.48437439000182060.81%741117001.0900000042
11Eric FehrRampages (COL)C191014241040242640152125.00%1328515.032353261012201168.35%2781212001.6800000024
12Alex FormentonRampages (COL)LW328142217100132653173815.09%1144613.941233200002291144.44%18920000.9900000200
13Brandon DavidsonRampages (COL)D2751520218026186021208.33%3959522.05448977000683000.00%01639000.6700000011
Stats d'équipe Total ou en Moyenne34217328045320224620374327106935861016.18%253668219.5467112179151812681436642211166.53%1951239322061.3613021212427
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Harri SateriRampages (COL)3226600.8893.801928201221101524111.0003320300
Stats d'équipe Total ou en Moyenne3226600.8893.801928201221101524111.0003320300


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Alex FormentonRampages (COL)LW181999-09-13No165 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm784,166$0$0$No784,166$Lien
Brandon DavidsonRampages (COL)D261991-08-21No208 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Carl GunnarssonRampages (COL)D301986-11-09No198 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Drew StaffordRampages (COL)RW311985-10-30No215 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Eric FehrRampages (COL)C321985-09-07No208 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm1,000,000$0$0$NoLien
Harri SateriRampages (COL)G271989-12-29No205 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm750,000$0$0$NoLien
Jacob JosefsonRampages (COL)C261991-03-02No196 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jussi JokinenRampages (COL)LW341983-04-01No191 Lbs6 ft0NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Laurent DauphinRampages (COL)C221995-03-27Yes180 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Mathieu JosephRampages (COL)RW201997-02-09Yes173 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Mike Fisher (Sur la Masse Salariale)Rampages (COL)C371980-06-05No216 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Nikolay GoldobinRampages (COL)LW/RW211995-10-07No185 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm863,333$0$0$NoLien
Phil VaroneRampages (COL)C261990-12-04No193 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1326.92195 Lbs6 ft11.08780,577$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jussi JokinenDrew Stafford40122
2Nikolay GoldobinPhil VaroneMathieu Joseph30122
3Alex FormentonEric FehrJacob Josefson20122
4Jussi JokinenJacob Josefson10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carl GunnarssonBrandon Davidson40122
2Laurent Dauphin30122
320122
4Carl GunnarssonBrandon Davidson10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jussi JokinenDrew Stafford60122
2Nikolay GoldobinPhil VaroneMathieu Joseph40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carl GunnarssonBrandon Davidson60122
2Laurent Dauphin40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Jussi Jokinen60122
2Drew StaffordPhil Varone40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carl GunnarssonBrandon Davidson60122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Jussi Jokinen60122Carl GunnarssonBrandon Davidson60122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Jussi Jokinen60122
2Drew StaffordPhil Varone40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Carl GunnarssonBrandon Davidson60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jussi JokinenDrew StaffordCarl GunnarssonBrandon Davidson
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jussi JokinenDrew StaffordCarl GunnarssonBrandon Davidson
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Eric Fehr, Alex Formenton, Mathieu JosephEric Fehr, Alex FormentonMathieu Joseph
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Carl Gunnarsson, Brandon Davidson, Carl GunnarssonBrandon Davidson,
Tirs de Pénalité
Jussi Jokinen, , Drew Stafford, Phil Varone, Mathieu Joseph
Gardien
#1 : Harri Sateri, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals312000001520-510100000410-6211000001110120.333152540003686743141301462409613643414910440.00%131023.08%146270165.91%50179862.78%41164763.52%694387683259552306
2Barracuda11000000936000000000001100000093621.000915240036867434230146240962266187342.86%3166.67%046270165.91%50179862.78%41164763.52%694387683259552306
3Bears11000000523110000005230000000000021.000561100368674327301462409633514113133.33%7185.71%046270165.91%50179862.78%41164763.52%694387683259552306
4Bruins11000000927000000000001100000092721.00091625003686743443014624096251010168337.50%5180.00%146270165.91%50179862.78%41164763.52%694387683259552306
5Condors1010000035-2000000000001010000035-200.000369103686743293014624096351214134125.00%7271.43%046270165.91%50179862.78%41164763.52%694387683259552306
6Gulls211000001513200000000000211000001513220.5001526410036867436230146240967025203510770.00%10730.00%046270165.91%50179862.78%41164763.52%694387683259552306
7Icedogs2200000014681100000042211000000104641.0001424380036867436930146240965820182910660.00%9277.78%046270165.91%50179862.78%41164763.52%694387683259552306
8Monsters220000001477110000007431100000073441.0001422360036867436630146240963810242916318.75%12283.33%146270165.91%50179862.78%41164763.52%694387683259552306
9Moose32001000181171100000084421001000107361.000183149003686743110301462409610026323613753.85%16381.25%146270165.91%50179862.78%41164763.52%694387683259552306
10Reigh2200000017982200000017980000000000041.000172946003686743833014624096581326289555.56%10370.00%146270165.91%50179862.78%41164763.52%694387683259552306
11Senateurs2100100012102100010006511100000065141.0001217290036867438730146240967529142114642.86%7357.14%046270165.91%50179862.78%41164763.52%694387683259552306
12Sound Tigers2200000015114110000008621100000075241.0001527420036867436030146240968123182710550.00%9455.56%046270165.91%50179862.78%41164763.52%694387683259552306
13Stars5220001016142211000008713110001087160.600162339003686743170301462409623087386517952.94%19763.16%146270165.91%50179862.78%41164763.52%694387683259552306
14Thunderbird2200000014410110000008261100000062441.0001423370036867436530146240966418252911436.36%10190.00%046270165.91%50179862.78%41164763.52%694387683259552306
Total322360201019912376141120100092563618124010101076740520.8131993285271036867431175301462409611023583224551667746.39%1484867.57%646270165.91%50179862.78%41164763.52%694387683259552306
16Wolves330000002361722000000175121100000061561.000233861003686743120301462409677312249241354.17%11190.91%046270165.91%50179862.78%41164763.52%694387683259552306
_Since Last GM Reset322360201019912376141120100092563618124010101076740520.8131993285271036867431175301462409611023583224551667746.39%1484867.57%646270165.91%50179862.78%41164763.52%694387683259552306
_Vs Conference2214601010130874397200000583721137401010725022320.72713021734710368674382630146240967862632173221045552.88%983663.27%446270165.91%50179862.78%41164763.52%694387683259552306
_Vs Division16104010108657297520000041281395201010452916240.750861412270036867436103014624096601207151228743952.70%682366.18%346270165.91%50179862.78%41164763.52%694387683259552306

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
3252W31993285271175110235832245510
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
322362010199123
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
1411210009256
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
18124101010767
Derniers 10 Matchs
WLOTWOTL SOWSOL
801010
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1667746.39%1484867.57%6
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
30146240963686743
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
46270165.91%50179862.78%41164763.52%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
694387683259552306


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2018-10-091Rampages7Admirals4WSommaire du Match
4 - 2018-10-1216Stars4Rampages6WSommaire du Match
7 - 2018-10-1528Rampages3Stars4LSommaire du Match
12 - 2018-10-2041Rampages5Moose4WXSommaire du Match
14 - 2018-10-2245Moose4Rampages8WSommaire du Match
17 - 2018-10-2554Rampages6Wolves1WSommaire du Match
19 - 2018-10-2765Icedogs2Rampages4WSommaire du Match
21 - 2018-10-2978Rampages10Icedogs4WSommaire du Match
22 - 2018-10-3080Rampages3Condors5LSommaire du Match
26 - 2018-11-0396Admirals10Rampages4LSommaire du Match
28 - 2018-11-05110Rampages9Barracuda3WSommaire du Match
30 - 2018-11-07119Wolves2Rampages10WSommaire du Match
32 - 2018-11-09130Rampages4Admirals6LSommaire du Match
34 - 2018-11-11142Stars3Rampages2LSommaire du Match
37 - 2018-11-14156Rampages3Stars2WSommaire du Match
40 - 2018-11-17168Reigh4Rampages5WSommaire du Match
45 - 2018-11-22189Wolves3Rampages7WSommaire du Match
48 - 2018-11-25202Rampages9Bruins2WSommaire du Match
51 - 2018-11-28213Bears2Rampages5WSommaire du Match
54 - 2018-12-01224Rampages6Thunderbird2WSommaire du Match
58 - 2018-12-05237Reigh5Rampages12WSommaire du Match
60 - 2018-12-07246Rampages6Gulls7LSommaire du Match
64 - 2018-12-11258Thunderbird2Rampages8WSommaire du Match
66 - 2018-12-13267Rampages2Stars1WXXSommaire du Match
68 - 2018-12-15274Rampages7Monsters3WSommaire du Match
70 - 2018-12-17285Monsters4Rampages7WSommaire du Match
72 - 2018-12-19291Rampages6Senateurs5WSommaire du Match
74 - 2018-12-21303Rampages5Moose3WSommaire du Match
75 - 2018-12-22310Senateurs5Rampages6WXSommaire du Match
78 - 2018-12-25320Rampages9Gulls6WSommaire du Match
81 - 2018-12-28334Sound Tigers6Rampages8WSommaire du Match
83 - 2018-12-30342Rampages7Sound Tigers5WSommaire du Match
85 - 2019-01-01353Rampages-Moose-
86 - 2019-01-02359Wolves-Rampages-
90 - 2019-01-06378Rampages-Bears-
91 - 2019-01-07384Bruins-Rampages-
96 - 2019-01-12405Icedogs-Rampages-
101 - 2019-01-17425Rampages-Barracuda-
103 - 2019-01-19430Heat-Rampages-
106 - 2019-01-22446Rampages-Icedogs-
108 - 2019-01-24454Barracuda-Rampages-
113 - 2019-01-29475Heat-Rampages-
115 - 2019-01-31481Rampages-Crunch-
119 - 2019-02-04501Marlies-Rampages-
124 - 2019-02-09518Rampages-Barracuda-
127 - 2019-02-12526Gulls-Rampages-
130 - 2019-02-15541Rampages-Condors-
131 - 2019-02-16549Devils-Rampages-
135 - 2019-02-20568Stars-Rampages-
140 - 2019-02-25590Bruins-Rampages-
142 - 2019-02-27598Rampages-Wolves-
146 - 2019-03-03613Phantoms-Rampages-
148 - 2019-03-05626Rampages-Marlies-
150 - 2019-03-07635Rampages-Condors-
151 - 2019-03-08643Stars-Rampages-
154 - 2019-03-11655Rampages-Admirals-
156 - 2019-03-13666Barracuda-Rampages-
158 - 2019-03-15676Rampages-Heat-
161 - 2019-03-18687Rampages-Reigh-
163 - 2019-03-20694Moose-Rampages-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
167 - 2019-03-24712Rampages-Phantoms-
168 - 2019-03-25718Penguins-Rampages-
173 - 2019-03-30738Condors-Rampages-
179 - 2019-04-05757Rampages-Penguins-
181 - 2019-04-07761Gulls-Rampages-
185 - 2019-04-11780Rocket-Rampages-
187 - 2019-04-13789Rampages-Icedogs-
190 - 2019-04-16803Rampages-Reigh-
192 - 2019-04-18810Rampages-Rocket-
193 - 2019-04-19815Admirals-Rampages-
198 - 2019-04-24834Rampages-Blacknight-
200 - 2019-04-26838Condors-Rampages-
203 - 2019-04-29856Rampages-Blacknight-
205 - 2019-05-01863Admirals-Rampages-
207 - 2019-05-03870Rampages-Heat-
209 - 2019-05-05882Rampages-Devils-
212 - 2019-05-08888Moose-Rampages-
217 - 2019-05-13911Icedogs-Rampages-
219 - 2019-05-15924Rampages-Wolves-
222 - 2019-05-18935Crunch-Rampages-
229 - 2019-05-25957Blacknight-Rampages-
235 - 2019-05-31982Blacknight-Rampages-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
27 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
481,958$ 939,750$ 939,750$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 340,188$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 153 5,653$ 864,909$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2322360201019912376141120100092563618124010101076740521993285271036867431175301462409611023583224551667746.39%1484867.57%646270165.91%50179862.78%41164763.52%694387683259552306
Total Saison Régulière322360201019912376141120100092563618124010101076740521993285271036867431175301462409611023583224551667746.39%1484867.57%646270165.91%50179862.78%41164763.52%694387683259552306