Senateurs

GP: 8 | W: 3 | L: 5 | OTL: 0 | P: 6
GF: 31 | GA: 35 | PP%: 35.71% | PK%: 48.57%
DG: Pascal Poirier | Morale : 49 | Moyenne d'Équipe : 68
Prochain matchs #85 vs Thunderbird
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Austin CzarnikX100.005336916563696765616962646073703752710
2Matt LuffX100.006143856780766466616369646263635452710
3Rudolfs BalcersX100.005436906870797567546866626563645652710
4Daniel CarrX100.005835946473786863656365616275684752700
5Travis BoydX100.005436926569757664787462746371674752690
6Christian FischerX100.008344836483738463526164746365627752680
7Dryden HuntX100.007338856873807467566865696367645252680
8Gemel SmithX100.005836906372757662686163586469655852680
9Jonny BrodzinskiX100.006637897179665968515662595571665252680
10Tim SchallerX100.008042896281687061516358775977693652680
11John QuennevilleXXX100.006238856376766462716063626065647852640
12Jordan OesterleX100.006436906571858463307364745373673749710
13Kevin ShattenkirkX100.007137877376858672307856635477716852710
14Michael Del ZottoX100.009437896275825561307354744877696652710
15Madison BoweyX100.008054676280796362307158675067656852680
16Chad RuhwedelX100.006836916471745964306558644977704652670
17Steven SantiniX100.008539826081835259306354674867647252670
Rayé
1Reid BoucherX100.005435936369766962696161596371665942680
2Ryan CarpenterX100.008436926374738162736659726175683642680
3Matt PuempelX100.005836906278807060585961575871667742670
4Tim HeedX100.005737876668776165307659635275684843660
5Zach TrotmanX100.006839815887796257305853654577694842660
6Trevor CarrickX100.005847746180827260305954584669655742640
7Christian DjoosX100.005635936268745861307354594869654742630
8Andreas BorgmanX100.006139815774868056305752554667646142620
MOYENNE D'ÉQUIPE100.00663987647577696348666065567166554968
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Garret Sparks100.00827472848180828180828171754752770
2Calvin Pickard100.00767775797574767574767573776352730
Rayé
MOYENNE D'ÉQUIPE100.0079767482787779787779787276555275
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jared Bednard88849085757579can4631,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Andreas BorgmanSenateurs (OTT)D221995-06-18No199 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Austin CzarnikSenateurs (OTT)C241992-12-12No170 Lbs5 ft9NoNoNo1Contrat d'EntréePro & Farm1,250,000$0$0$NoLien
Calvin PickardSenateurs (OTT)G251992-04-15No207 Lbs6 ft1NoNoNo2Contrat d'EntréePro & Farm750,000$0$0$NoLien
Chad RuhwedelSenateurs (OTT)D271990-05-07No191 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm750,000$0$0$NoLien
Christian DjoosSenateurs (OTT)D231994-08-06No169 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm1,250,000$0$0$NoLien
Christian FischerSenateurs (OTT)RW201997-04-15No214 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm821,666$0$0$NoLien
Daniel CarrSenateurs (OTT)LW251991-11-01No193 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Dryden HuntSenateurs (OTT)LW211995-11-24No191 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Garret SparksSenateurs (OTT)G241993-06-28No201 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Gemel SmithSenateurs (OTT)C231994-04-16No195 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
John QuennevilleSenateurs (OTT)C/LW/RW211996-04-16No195 Lbs6 ft1NoNoNo2Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jonny BrodzinskiSenateurs (OTT)LW241993-06-19No208 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jordan OesterleSenateurs (OTT)D251992-06-25No182 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Kevin ShattenkirkSenateurs (OTT)D281989-01-29No206 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm1,000,000$0$0$NoLien
Madison BoweySenateurs (OTT)D221995-04-22No198 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm1,000,000$0$0$NoLien
Matt LuffSenateurs (OTT)RW201997-05-05No196 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Matt PuempelSenateurs (OTT)LW241993-01-24No205 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Michael Del ZottoSenateurs (OTT)D271990-06-24No201 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm1,500,000$0$0$NoLien
Reid BoucherSenateurs (OTT)C241993-09-08No195 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Rudolfs BalcersSenateurs (OTT)LW201997-04-08No175 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Ryan CarpenterSenateurs (OTT)C261991-01-18No200 Lbs6 ft0NoNoNo3Contrat d'EntréePro & Farm750,000$0$0$NoLien
Steven SantiniSenateurs (OTT)D221995-03-07No205 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm1,416,666$0$0$NoLien
Tim HeedSenateurs (OTT)D261991-01-27No180 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm960,000$0$0$NoLien
Tim SchallerSenateurs (OTT)C261990-11-16No204 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm1,900,000$0$0$NoLien
Travis BoydSenateurs (OTT)C241993-09-14No185 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Trevor CarrickSenateurs (OTT)D231994-07-04No196 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm2,325,000$0$0$NoLien
Zach TrotmanSenateurs (OTT)D271990-08-26No217 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm750,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2723.81195 Lbs6 ft01.30969,383$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
140122
230122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
230122
320122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
160122
240122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Tirs de Pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bruins330000002191222000000165111100000054161.0002139600061114069435964063222239161062.50%11554.55%25611250.00%5812546.40%5413839.13%1741021727513264
2Crunch1010000047-3000000000001010000047-300.00048120061114014435964023610126233.33%6350.00%05611250.00%5812546.40%5413839.13%1741021727513264
3Marlies1010000024-2000000000001010000024-200.000246006111402643596402191063133.33%5180.00%05611250.00%5812546.40%5413839.13%1741021727513264
4Phantoms1010000018-7000000000001010000018-700.00012300611140164359640361114135120.00%770.00%05611250.00%5812546.40%5413839.13%1741021727513264
5Rocket1010000024-2000000000001010000024-200.000246006111402243596402046157114.29%3166.67%05611250.00%5812546.40%5413839.13%1741021727513264
6Thunderbird1010000013-21010000013-20000000000000.00011200611140194359640144615500.00%3166.67%05611250.00%5812546.40%5413839.13%1741021727513264
Total835000003135-4321000001789514000001427-1360.3753158890061114016643596401775668100421535.71%351848.57%25611250.00%5812546.40%5413839.13%1741021727513264
_Since Last GM Reset835000003135-4321000001789514000001427-1360.3753158890061114016643596401775668100421535.71%351848.57%25611250.00%5812546.40%5413839.13%1741021727513264
_Vs Conference835000003135-4321000001789514000001427-1360.3753158890061114016643596401775668100421535.71%351848.57%25611250.00%5812546.40%5413839.13%1741021727513264
_Vs Division7340000030273321000001789413000001319-660.429305686006111401504359640141455487371437.84%281160.71%25611250.00%5812546.40%5413839.13%1741021727513264

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
86L2315889166177566810000
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
83500003135
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3210000178
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
51400001427
Derniers 10 Matchs
WLOTWOTL SOWSOL
350000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
421535.71%351848.57%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
4359640611140
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
5611250.00%5812546.40%5413839.13%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1741021727513264


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2019-10-056Senateurs4Crunch7LSommaire du Match
4 - 2019-10-0722Bruins2Senateurs8WSommaire du Match
5 - 2019-10-0824Senateurs5Bruins4WSommaire du Match
8 - 2019-10-1143Thunderbird3Senateurs1LSommaire du Match
10 - 2019-10-1350Senateurs2Marlies4LSommaire du Match
12 - 2019-10-1562Bruins3Senateurs8WSommaire du Match
14 - 2019-10-1770Senateurs1Phantoms8LSommaire du Match
15 - 2019-10-1879Senateurs2Rocket4LSommaire du Match
16 - 2019-10-1985Senateurs-Thunderbird-
18 - 2019-10-2196Marlies-Senateurs-
22 - 2019-10-25119Rocket-Senateurs-
24 - 2019-10-27133Senateurs-Monsters-
25 - 2019-10-28141Crunch-Senateurs-
27 - 2019-10-30152Senateurs-Crunch-
29 - 2019-11-01159Senateurs-Bruins-
30 - 2019-11-02168Crunch-Senateurs-
35 - 2019-11-07187Penguins-Senateurs-
37 - 2019-11-09203Senateurs-Devils-
39 - 2019-11-11211Bears-Senateurs-
42 - 2019-11-14226Senateurs-Blacknight-
44 - 2019-11-16236Blacknight-Senateurs-
46 - 2019-11-18247Senateurs-Moose-
48 - 2019-11-20257Wolves-Senateurs-
51 - 2019-11-23271Senateurs-Marlies-
52 - 2019-11-24282Reigh-Senateurs-
55 - 2019-11-27293Senateurs-Rocket-
57 - 2019-11-29308Bears-Senateurs-
61 - 2019-12-03327Heat-Senateurs-
64 - 2019-12-06341Senateurs-Marlies-
65 - 2019-12-07351Moose-Senateurs-
68 - 2019-12-10370Sound Tigers-Senateurs-
70 - 2019-12-12378Senateurs-Icedogs-
74 - 2019-12-16395Senateurs-Heat-
75 - 2019-12-17400Gulls-Senateurs-
78 - 2019-12-20415Senateurs-Bears-
79 - 2019-12-21423Phantoms-Senateurs-
82 - 2019-12-24441Monsters-Senateurs-
83 - 2019-12-25452Senateurs-Wolves-
86 - 2019-12-28465Senateurs-Rampages-
87 - 2019-12-29472Admirals-Senateurs-
90 - 2020-01-01489Monsters-Senateurs-
94 - 2020-01-05505Senateurs-Rocket-
96 - 2020-01-07514Phantoms-Senateurs-
98 - 2020-01-09526Senateurs-Devils-
100 - 2020-01-11533Senateurs-Bears-
102 - 2020-01-13544Marlies-Senateurs-
105 - 2020-01-16559Senateurs-Stars-
106 - 2020-01-17567Senateurs-Penguins-
107 - 2020-01-18572Crunch-Senateurs-
111 - 2020-01-22591Condors-Senateurs-
114 - 2020-01-25607Senateurs-Crunch-
116 - 2020-01-27616Stars-Senateurs-
119 - 2020-01-30627Senateurs-Monsters-
120 - 2020-01-31637Sound Tigers-Senateurs-
123 - 2020-02-03657Senateurs-Condors-
124 - 2020-02-04665Rampages-Senateurs-
127 - 2020-02-07682Bruins-Senateurs-
129 - 2020-02-09691Senateurs-Gulls-
131 - 2020-02-11702Senateurs-Barracuda-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
133 - 2020-02-13711Thunderbird-Senateurs-
135 - 2020-02-15719Senateurs-Thunderbird-
137 - 2020-02-17733Thunderbird-Senateurs-
138 - 2020-02-18741Senateurs-Admirals-
143 - 2020-02-23756Reigh-Senateurs-
146 - 2020-02-26774Senateurs-Penguins-
147 - 2020-02-27783Icedogs-Senateurs-
149 - 2020-02-29793Senateurs-Thunderbird-
152 - 2020-03-03805Marlies-Senateurs-
154 - 2020-03-05815Senateurs-Phantoms-
156 - 2020-03-07825Senateurs-Bruins-
158 - 2020-03-09833Devils-Senateurs-
161 - 2020-03-12851Devils-Senateurs-
167 - 2020-03-18874Bruins-Senateurs-
169 - 2020-03-20887Senateurs-Reigh-
171 - 2020-03-22900Rocket-Senateurs-
172 - 2020-03-23907Senateurs-Phantoms-
175 - 2020-03-26922Barracuda-Senateurs-
176 - 2020-03-27927Senateurs-Bruins-
180 - 2020-03-31947Penguins-Senateurs-
184 - 2020-04-04959Senateurs-Sound Tigers-
187 - 2020-04-07968Rocket-Senateurs-
189 - 2020-04-09977Senateurs-Sound Tigers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
38 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
283,299$ 2,617,334$ 2,617,334$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 204,761$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 176 18,939$ 3,333,264$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
3835000003135-4321000001789514000001427-1363158890061114016643596401775668100421535.71%351848.57%25611250.00%5812546.40%5413839.13%1741021727513264
Total Saison Régulière835000003135-4321000001789514000001427-1363158890061114016643596401775668100421535.71%351848.57%25611250.00%5812546.40%5413839.13%1741021727513264
Séries
2159600000935637844000004636107520000047202718931492420027353016822122352287539211150178864754.65%652758.46%221938656.74%20339451.52%16930555.41%345221322132246119
Total Séries159600000935637844000004636107520000047202718931492420027353016822122352287539211150178864754.65%652758.46%221938656.74%20339451.52%16930555.41%345221322132246119