Thunderbird

GP: 7 | W: 4 | L: 2 | OTL: 1 | P: 9
GF: 36 | GA: 28 | PP%: 42.42% | PK%: 60.00%
DG: Gerry Lunam | Morale : 50 | Moyenne d'Équipe : 69
Prochain matchs #85 vs Senateurs
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Denis MalginX100.006338866865737266626564616463625752700
2Evan RodriguesX100.005843846867818766787162776471674348700
3Mason AppletonX100.006437896679736466586763656265645652700
4Ivan BarbashevX100.007442896672699365746367786667657550690
5Dillon DubeX100.005637896572757164686661636261637152690
6Alexander VolkovX100.006139836276949561635958605963626352630
7Trevor van RiemsdykX100.005836916279789161307058714975693648690
8Sebastien AhoX100.005237876068939059306354585265635652630
Rayé
MOYENNE D'ÉQUIPE100.00613987657280836458666167606664575168
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Lyon100.00786866787776787776787773774248740
Rayé
MOYENNE D'ÉQUIPE100.0078686678777678777678777377424874
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Rick Tocchet84927887817667CAN542500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Alex LyonThunderbird (FLA)G241992-12-09No201 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Alexander VolkovThunderbird (FLA)LW201997-08-02No192 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm864,167$0$0$NoLien
Denis MalginThunderbird (FLA)C201997-01-18No177 Lbs5 ft9NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Dillon DubeThunderbird (FLA)C191998-07-20No187 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Evan RodriguesThunderbird (FLA)LW241993-07-28No176 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm2,000,000$0$0$NoLien
Ivan BarbashevThunderbird (FLA)C211995-12-14No187 Lbs6 ft0NoNoNo2Contrat d'EntréePro & Farm1,475,000$0$0$NoLien
Mason AppletonThunderbird (FLA)C211996-01-15No193 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Sebastien AhoThunderbird (FLA)D211996-02-17No177 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Trevor van RiemsdykThunderbird (FLA)D261991-07-24No192 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm2,300,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
921.78187 Lbs6 ft01.111,154,352$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
140122
230122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
230122
320122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
160122
240122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Tirs de Pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bruins11000000963000000000001100000096321.0009162500614160213161540298141110550.00%7528.57%04710544.76%3410333.01%6015339.22%153881446712357
2Crunch11000000844110000008440000000000021.00081523006141602231615401998146466.67%4175.00%04710544.76%3410333.01%6015339.22%153881446712357
3Marlies20100100510-51010000026-41000010034-110.250581300614160383161540532022208225.00%11554.55%04710544.76%3410333.01%6015339.22%153881446712357
4Rocket211000001174110000006151010000056-120.50011213200614160513161540521316276233.33%8362.50%04710544.76%3410333.01%6015339.22%153881446712357
5Senateurs11000000312000000000001100000031221.0003580061416014316154019510183133.33%50100.00%04710544.76%3410333.01%6015339.22%153881446712357
Total74200100362883210000016115421001002017390.6433665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357
_Since Last GM Reset74200100362883210000016115421001002017390.6433665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357
_Vs Conference74200100362883210000016115421001002017390.6433665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357
_Vs Division74200100362883210000016115421001002017390.6433665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
79W1366510114617255709000
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
74201003628
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
32100001611
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
42101002017
Derniers 10 Matchs
WLOTWOTL SOWSOL
420100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
331442.42%351460.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
3161540614160
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
4710544.76%3410333.01%6015339.22%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
153881446712357


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2019-10-059Thunderbird3Marlies4LXSommaire du Match
4 - 2019-10-0720Crunch4Thunderbird8WSommaire du Match
6 - 2019-10-0929Marlies6Thunderbird2LSommaire du Match
8 - 2019-10-1143Thunderbird3Senateurs1WSommaire du Match
10 - 2019-10-1348Thunderbird9Bruins6WSommaire du Match
11 - 2019-10-1454Thunderbird5Rocket6LSommaire du Match
14 - 2019-10-1769Rocket1Thunderbird6WSommaire du Match
16 - 2019-10-1985Senateurs-Thunderbird-
18 - 2019-10-2199Thunderbird-Crunch-
19 - 2019-10-22108Thunderbird-Blacknight-
21 - 2019-10-24118Bruins-Thunderbird-
24 - 2019-10-27134Admirals-Thunderbird-
26 - 2019-10-29145Thunderbird-Marlies-
28 - 2019-10-31157Marlies-Thunderbird-
30 - 2019-11-02165Thunderbird-Sound Tigers-
33 - 2019-11-05182Monsters-Thunderbird-
35 - 2019-11-07192Thunderbird-Phantoms-
37 - 2019-11-09204Stars-Thunderbird-
39 - 2019-11-11208Thunderbird-Reigh-
42 - 2019-11-14229Thunderbird-Icedogs-
45 - 2019-11-17237Bears-Thunderbird-
47 - 2019-11-19254Marlies-Thunderbird-
49 - 2019-11-21266Thunderbird-Rocket-
51 - 2019-11-23272Thunderbird-Crunch-
52 - 2019-11-24281Moose-Thunderbird-
55 - 2019-11-27298Thunderbird-Bruins-
57 - 2019-11-29305Monsters-Thunderbird-
59 - 2019-12-01316Thunderbird-Penguins-
61 - 2019-12-03330Penguins-Thunderbird-
63 - 2019-12-05340Thunderbird-Crunch-
65 - 2019-12-07348Thunderbird-Condors-
66 - 2019-12-08358Blacknight-Thunderbird-
70 - 2019-12-12379Heat-Thunderbird-
72 - 2019-12-14388Thunderbird-Penguins-
74 - 2019-12-16394Thunderbird-Rampages-
76 - 2019-12-18405Penguins-Thunderbird-
78 - 2019-12-20417Thunderbird-Heat-
80 - 2019-12-22427Thunderbird-Blacknight-
81 - 2019-12-23433Reigh-Thunderbird-
83 - 2019-12-25451Rampages-Thunderbird-
86 - 2019-12-28467Thunderbird-Barracuda-
87 - 2019-12-29474Thunderbird-Monsters-
88 - 2019-12-30480Stars-Thunderbird-
93 - 2020-01-04499Thunderbird-Monsters-
94 - 2020-01-05504Barracuda-Thunderbird-
97 - 2020-01-08520Thunderbird-Bruins-
98 - 2020-01-09528Condors-Thunderbird-
103 - 2020-01-14548Thunderbird-Devils-
104 - 2020-01-15551Icedogs-Thunderbird-
107 - 2020-01-18570Thunderbird-Devils-
108 - 2020-01-19576Bruins-Thunderbird-
110 - 2020-01-21588Thunderbird-Admirals-
112 - 2020-01-23600Bears-Thunderbird-
114 - 2020-01-25608Thunderbird-Stars-
117 - 2020-01-28621Thunderbird-Sound Tigers-
118 - 2020-01-29623Crunch-Thunderbird-
121 - 2020-02-01643Thunderbird-Phantoms-
122 - 2020-02-02648Wolves-Thunderbird-
125 - 2020-02-05667Thunderbird-Admirals-
126 - 2020-02-06673Crunch-Thunderbird-
130 - 2020-02-10695Rocket-Thunderbird-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
133 - 2020-02-13711Thunderbird-Senateurs-
135 - 2020-02-15719Senateurs-Thunderbird-
137 - 2020-02-17733Thunderbird-Senateurs-
139 - 2020-02-19743Rocket-Thunderbird-
144 - 2020-02-24763Devils-Thunderbird-
146 - 2020-02-26772Thunderbird-Bears-
148 - 2020-02-28785Thunderbird-Gulls-
149 - 2020-02-29793Senateurs-Thunderbird-
154 - 2020-03-05813Bruins-Thunderbird-
157 - 2020-03-08832Sound Tigers-Thunderbird-
160 - 2020-03-11841Thunderbird-Rocket-
162 - 2020-03-13854Thunderbird-Wolves-
164 - 2020-03-15860Devils-Thunderbird-
165 - 2020-03-16867Thunderbird-Bears-
169 - 2020-03-20884Sound Tigers-Thunderbird-
171 - 2020-03-22897Thunderbird-Moose-
173 - 2020-03-24909Admirals-Thunderbird-
174 - 2020-03-25916Thunderbird-Marlies-
177 - 2020-03-28934Phantoms-Thunderbird-
183 - 2020-04-03956Phantoms-Thunderbird-
189 - 2020-04-09976Gulls-Thunderbird-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
38 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
114,023$ 1,038,917$ 1,038,917$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 74,753$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 176 8,057$ 1,418,032$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
374200100362883210000016115421001002017393665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357
Total Saison Régulière74200100362883210000016115421001002017393665101006141601463161540172557090331442.42%351460.00%04710544.76%3410333.01%6015339.22%153881446712357