Stars

GP: 29 | W: 21 | L: 7 | OTL: 1 | P: 43
GF: 207 | GA: 163 | PP%: 50.00% | PK%: 59.84%
DG: Hugo St-Amour | Morale : 63 | Moyenne d'Équipe : 70
Prochain matchs #392 vs Devils
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Antoine RousselX99.007959536972757867567465736678713576710
2Cal ClutterbuckX99.009241766476788663556761796280744066710
3Eric FehrX100.005839826488698563786162825984744659710
4Jay BeagleX98.008338856185757160826557825984742567710
5Johan LarssonX100.008145796473778663846161826473675970700
6Dale WeiseX99.007442876982737668546266696379725170690
7Markus GranlundX100.005937876370789062736165826471677071690
8Mark BorowieckiX98.009981565979806658306354724878704556700
9Alexander PetrovicX100.009643715790815256306051664773676553680
10Igor OzhiganovX100.007438866483766663306261585473673727650
Rayé
1Frederick GaudreauX100.006335946072646859745658625971674365630
MOYENNE D'ÉQUIPE99.36784578637975756259636073597770476269
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alexandar Georgiev100.00848886738382848382848365694957780
2Jared Coreau100.00728078927170727170727175814557730
Rayé
1Antoine Bibeau100.00747573867372747372747369735154720
MOYENNE D'ÉQUIPE100.0077817984767577767577767074485674
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dan Bylsma71707174726777USA482700,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dale WeiseStars (DAL)RW29392968100024231814711021.55%1255519.1616143031843034575174.07%273723032.4500000732
2Jay BeagleStars (DAL)C29184664075305775315324.00%1563221.808233115750112961175.40%10571123002.0201010223
3Antoine RousselStars (DAL)LW29233962-3104304424157549014.65%1760620.929213017750002711162.96%545614022.0401213223
4Cal ClutterbuckStars (DAL)RW293224561133153119119467526.89%1253218.3716102622761015434063.24%682527022.1001012444
5Markus GranlundStars (DAL)C2919345327511221385810413.77%1250517.431119302483000023160.00%702118012.1000001135
6Johan LarssonStars (DAL)C292325481016022241514411515.23%1950217.342242180110251065.49%1422122021.9100000233
7Frederick GaudreauStars (DAL)C26182644182088109355716.51%1140215.48213211000062083.33%122213022.1900000421
8Mark BorowieckiStars (DAL)D263293218741049247336344.11%3365725.3021012577000353000.00%0937000.9700100002
9Alexander PetrovicStars (DAL)D153151812201027123015810.00%1538825.88369657011137100.00%2315000.9300101010
10Eric FehrStars (DAL)C664104007122141128.57%510517.51224325000070067.95%7803001.9000000011
11Igor OzhiganovStars (DAL)D2011-100103130.00%13316.720000800002000.00%001000.6000000000
Stats d'équipe Total ou en Moyenne2491842724568126375254225105737166017.41%152492219.77711081791275924371740518472.32%15102051960121.8503437222124
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Stats d'équipe Total ou en Moyenne0.0000.0000.000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Alexandar GeorgievStars (DAL)G211996-02-10No179 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm792,500$0$0$NoLien
Alexander PetrovicStars (DAL)D251992-03-03No216 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Antoine BibeauStars (DAL)G231994-05-01No213 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Antoine RousselStars (DAL)LW271989-11-21No199 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm750,000$0$0$NoLien
Cal ClutterbuckStars (DAL)RW291987-11-18No216 Lbs5 ft11NoNoNo3Sans RestrictionPro & Farm921,000$0$0$NoLien
Dale WeiseStars (DAL)RW291988-08-05No206 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm750,000$0$0$NoLien
Eric FehrStars (DAL)C321985-09-07No209 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm751,000$0$0$NoLien
Frederick GaudreauStars (DAL)C241993-05-01No179 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Igor OzhiganovStars (DAL)D241992-10-13No210 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jared CoreauStars (DAL)G251991-11-05No214 Lbs6 ft5NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jay BeagleStars (DAL)C311985-10-16No210 Lbs6 ft3NoNoNo3Sans RestrictionPro & Farm952,000$0$0$NoLien
Johan LarssonStars (DAL)C251992-07-25No202 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm1,550,000$0$0$NoLien
Mark BorowieckiStars (DAL)D281989-07-12No207 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm1,950,000$0$0$NoLien
Markus GranlundStars (DAL)C241993-04-16No180 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm1,300,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1426.21203 Lbs6 ft21.43961,893$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Antoine RousselJay BeagleCal Clutterbuck40122
2Markus GranlundDale Weise30122
3Johan Larsson20122
4Jay BeagleMarkus GranlundAntoine Roussel10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Borowiecki40122
230122
320122
4Mark Borowiecki10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Antoine RousselJay BeagleCal Clutterbuck60122
2Markus GranlundDale Weise40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Borowiecki60122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Jay BeagleAntoine Roussel60122
2Cal Clutterbuck40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Borowiecki60122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Jay Beagle60122Mark Borowiecki60122
2Antoine Roussel4012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Jay BeagleAntoine Roussel60122
2Cal Clutterbuck40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mark Borowiecki60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Antoine RousselJay BeagleCal ClutterbuckMark Borowiecki
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Antoine RousselJay BeagleCal ClutterbuckMark Borowiecki
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Johan Larsson, , Dale WeiseJohan Larsson, Dale Weise
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Mark Borowiecki, Mark Borowiecki,
Tirs de Pénalité
Jay Beagle, Antoine Roussel, Cal Clutterbuck, , Johan Larsson
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals4310000029236211000001514122000000149560.750294675004278843186374432382911235404820840.00%20955.00%143360471.69%28142665.96%47667071.04%694417572224482271
2Barracuda210010001611521001000161150000000000041.000162743004278843723744323829511363248562.50%9366.67%043360471.69%28142665.96%47667071.04%694417572224482271
3Bears11000000651110000006510000000000021.000611170042788434037443238292898103133.33%4250.00%043360471.69%28142665.96%47667071.04%694417572224482271
4Condors330000002214811000000633220000001611561.000223961004278843112374432382952192031181372.22%9277.78%043360471.69%28142665.96%47667071.04%694417572224482271
5Icedogs320010002719810001000981220000001811761.000274168004278843126374432382967312438191368.42%12466.67%043360471.69%28142665.96%47667071.04%694417572224482271
6Marlies11000000642110000006420000000000021.000612180042788434537443238292583016200.00%6266.67%043360471.69%28142665.96%47667071.04%694417572224482271
7Monsters10001000871100010008710000000000021.00081220004278843393744323829339896466.67%4175.00%043360471.69%28142665.96%47667071.04%694417572224482271
8Moose312000001514120200000410-611000000114720.33315243910427884312537443238299838424816531.25%11554.55%043360471.69%28142665.96%47667071.04%694417572224482271
9Phantoms1010000059-4000000000001010000059-400.000571200427884346374432382944151212300.00%6516.67%043360471.69%28142665.96%47667071.04%694417572224482271
10Rampages422000002325-2211000001214-2211000001111040.500234366004278843165374432382913959326723939.13%16850.00%043360471.69%28142665.96%47667071.04%694417572224482271
11Rocket110000001331011000000133100000000000021.00013183100427884340374432382948911147685.71%3166.67%143360471.69%28142665.96%47667071.04%694417572224482271
12Thunderbird10100000510-50000000000010100000510-500.0005101500427884344374432382936171211400.00%6350.00%043360471.69%28142665.96%47667071.04%694417572224482271
Total29187030012071634417104030001219130128300001867214430.741207341548104278843119337443238298552833693701487450.00%1275159.84%443360471.69%28142665.96%47667071.04%694417572224482271
14Wolves43000001321913330000002612141000000167-170.8753251830042788431533744323829122216742191052.63%21671.43%243360471.69%28142665.96%47667071.04%694417572224482271
_Since Last GM Reset29187030012071634417104030001219130128300001867214430.741207341548104278843119337443238298552833693701487450.00%1275159.84%443360471.69%28142665.96%47667071.04%694417572224482271
_Vs Conference231550200116412539137402000887216108100001765323350.76116427143510427884393937443238296412162882981236351.22%983762.24%343360471.69%28142665.96%47667071.04%694417572224482271
_Vs Division1811501001126100261054010006658886100001604218250.6941262053311042788437553744323829538184205243974546.39%803260.00%343360471.69%28142665.96%47667071.04%694417572224482271

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
2943OTW1207341548119385528336937010
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
291873001207163
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
17104300012191
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
128300018672
Derniers 10 Matchs
WLOTWOTL SOWSOL
811000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1487450.00%1275159.84%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
37443238294278843
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
43360471.69%28142665.96%47667071.04%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
694417572224482271


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-10-0611Rampages6Stars9WSommaire du Match
5 - 2019-10-0825Admirals5Stars8WSommaire du Match
6 - 2019-10-0934Stars11Moose4WSommaire du Match
10 - 2019-10-1351Wolves4Stars10WSommaire du Match
13 - 2019-10-1663Stars6Rampages4WSommaire du Match
15 - 2019-10-1876Rampages8Stars3LSommaire du Match
17 - 2019-10-2094Stars7Icedogs4WSommaire du Match
18 - 2019-10-21101Icedogs8Stars9WXSommaire du Match
22 - 2019-10-25121Moose5Stars1LSommaire du Match
23 - 2019-10-26127Stars6Wolves7LXXSommaire du Match
25 - 2019-10-28142Stars5Rampages7LSommaire du Match
27 - 2019-10-30151Admirals9Stars7LSommaire du Match
29 - 2019-11-01160Stars6Admirals3WSommaire du Match
32 - 2019-11-04174Barracuda6Stars7WXSommaire du Match
36 - 2019-11-08193Wolves5Stars6WSommaire du Match
37 - 2019-11-09204Stars5Thunderbird10LSommaire du Match
40 - 2019-11-12218Wolves3Stars10WSommaire du Match
44 - 2019-11-16235Stars5Phantoms9LSommaire du Match
45 - 2019-11-17241Barracuda5Stars9WSommaire du Match
49 - 2019-11-21265Marlies4Stars6WSommaire du Match
52 - 2019-11-24283Stars11Condors7WSommaire du Match
54 - 2019-11-26289Rocket3Stars13WSommaire du Match
56 - 2019-11-28304Stars8Admirals6WSommaire du Match
58 - 2019-11-30313Condors3Stars6WSommaire du Match
63 - 2019-12-05337Bears5Stars6WSommaire du Match
64 - 2019-12-06347Stars11Icedogs7WSommaire du Match
67 - 2019-12-09361Moose5Stars3LSommaire du Match
69 - 2019-12-11373Stars5Condors4WSommaire du Match
71 - 2019-12-13385Monsters7Stars8WXSommaire du Match
73 - 2019-12-15392Stars-Devils-
75 - 2019-12-17401Stars-Icedogs-
77 - 2019-12-19410Heat-Stars-
79 - 2019-12-21425Stars-Bruins-
80 - 2019-12-22431Penguins-Stars-
83 - 2019-12-25449Stars-Admirals-
84 - 2019-12-26454Stars-Gulls-
85 - 2019-12-27461Icedogs-Stars-
88 - 2019-12-30480Stars-Thunderbird-
89 - 2019-12-31484Condors-Stars-
93 - 2020-01-04498Stars-Wolves-
95 - 2020-01-06508Bruins-Stars-
97 - 2020-01-08523Stars-Penguins-
99 - 2020-01-10530Stars-Moose-
100 - 2020-01-11534Admirals-Stars-
104 - 2020-01-15554Stars-Moose-
105 - 2020-01-16559Senateurs-Stars-
107 - 2020-01-18574Stars-Monsters-
109 - 2020-01-20583Gulls-Stars-
112 - 2020-01-23602Stars-Rocket-
114 - 2020-01-25608Thunderbird-Stars-
116 - 2020-01-27616Stars-Senateurs-
119 - 2020-01-30631Heat-Stars-
121 - 2020-02-01644Stars-Gulls-
123 - 2020-02-03653Icedogs-Stars-
125 - 2020-02-05668Stars-Wolves-
126 - 2020-02-06675Devils-Stars-
130 - 2020-02-10696Stars-Monsters-
131 - 2020-02-11703Crunch-Stars-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
134 - 2020-02-14717Stars-Sound Tigers-
135 - 2020-02-15723Phantoms-Stars-
140 - 2020-02-20747Moose-Stars-
144 - 2020-02-24765Stars-Reigh-
145 - 2020-02-25771Gulls-Stars-
147 - 2020-02-27782Stars-Barracuda-
150 - 2020-03-01795Sound Tigers-Stars-
153 - 2020-03-04811Stars-Crunch-
155 - 2020-03-06818Stars-Bears-
156 - 2020-03-07823Reigh-Stars-
159 - 2020-03-10839Stars-Reigh-
160 - 2020-03-11846Stars-Blacknight-
161 - 2020-03-12850Reigh-Stars-
165 - 2020-03-16866Stars-Marlies-
166 - 2020-03-17870Stars-Blacknight-
168 - 2020-03-19877Marlies-Stars-
171 - 2020-03-22899Rampages-Stars-
175 - 2020-03-26919Rampages-Stars-
176 - 2020-03-27928Stars-Barracuda-
178 - 2020-03-29939Stars-Rampages-
180 - 2020-03-31946Blacknight-Stars-
183 - 2020-04-03957Stars-Heat-
187 - 2020-04-07969Blacknight-Stars-
190 - 2020-04-10982Stars-Heat-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
24 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
739,667$ 1,346,650$ 1,346,650$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 479,478$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 120 10,715$ 1,285,800$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
32918703001207163441710403000121913012830000186721443207341548104278843119337443238298552833693701487450.00%1275159.84%443360471.69%28142665.96%47667071.04%694417572224482271
Total Saison Régulière2918703001207163441710403000121913012830000186721443207341548104278843119337443238298552833693701487450.00%1275159.84%443360471.69%28142665.96%47667071.04%694417572224482271
Séries
29540000048371153200000312110422000001716110488313100619230341939715102938710090522853.85%451762.22%48520741.06%7219137.70%7318639.25%1861162068614764
Total Séries9540000048371153200000312110422000001716110488313100619230341939715102938710090522853.85%451762.22%48520741.06%7219137.70%7318639.25%1861162068614764