Admirals

GP: 30 | W: 21 | L: 9 | OTL: 0 | P: 42
GF: 172 | GA: 113 | PP%: 56.67% | PK%: 72.66%
DG: Martin Renaud | Morale : 59 | Moyenne d'Équipe : 64
Prochain matchs #388 vs Barracuda
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Vladislav KamenevX100.005242736174644762666656605650507454650
2Aleksi Saarela (R)X100.006141776048649860675763606350504458650
3Jason DickinsonXX100.006144736277719079694850606351517967620
4Hudson FaschingX100.006644706179609957505757605751515970610
5Nick PaulX100.006943706189659458514050596251516166580
6Joe MorrowX100.007442837670807274305558647154547754670
7Dillon HeatheringtonX100.006646695184538955315753645450507173610
Rayé
1Brett LernoutX100.006543725184538953304550765350506537630
2Chris BigrasX100.005942775770578260306256715752517745630
MOYENNE D'ÉQUIPE100.00644374607563846247545564605151675863
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mackenzie Blackwood (R)100.00656771906869696666666350584466670
Rayé
1Al Montoya100.00707078827576757474677162665237710
MOYENNE D'ÉQUIPE100.0068697586727372707067675662485269
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dave Tipett96848392979695can5611,100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jason DickinsonAdmirals (NHS)C/LW303356892531521231876613217.65%1254818.291725423677011023160.38%533116143.2400001846
2Hudson FaschingAdmirals (NHS)RW3035417618611532282125513916.51%1561420.481621373574000394151.72%583819032.4701102658
3Nick PaulAdmirals (NHS)LW3014274152603413180721047.78%1453417.80512171749000071178.95%194314001.5400000440
4Chris BigrasAdmirals (NHS)D1582937128010138336349.64%4039726.48714212043011653310.00%01630001.8600000160
5Dillon HeatheringtonAdmirals (NHS)D304172118552514228641334.65%2151617.23235729011432100.00%0740000.8100104114
6Brett LernoutAdmirals (NHS)D10611171080121227141322.22%2125825.85639625000240100.00%0614011.3200000101
Stats d'équipe Total ou en Moyenne145100181281881894512311177528445512.90%123286919.7953781311213000331514713459.23%130141133181.9601207212019
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mackenzie BlackwoodAdmirals (NHS)2113500.8803.7011500071593308000.00002030013
2Al MontoyaAdmirals (NHS)107300.9053.645610034359177200.0000100110
Stats d'équipe Total ou en Moyenne3120800.8903.68171100105952485200.00003030123


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Al MontoyaAdmirals (NHS)G321985-02-13No201 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm1,062,500$0$0$NoLien
Aleksi SaarelaAdmirals (NHS)C201997-01-07Yes198 Lbs5 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Brett LernoutAdmirals (NHS)D221995-09-24No214 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Chris BigrasAdmirals (NHS)D221995-02-22No190 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm874,125$0$0$NoLien
Dillon HeatheringtonAdmirals (NHS)D221995-05-09No215 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Hudson FaschingAdmirals (NHS)RW221995-07-28No204 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm874,125$0$0$NoLien
Jason DickinsonAdmirals (NHS)C/LW221995-07-04No205 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm875,000$0$0$NoLien
Joe MorrowAdmirals (NHS)D241992-12-09No196 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm1,000,000$0$0$NoLien
Mackenzie BlackwoodAdmirals (NHS)G201996-12-09Yes225 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Nick PaulAdmirals (NHS)LW221995-03-20No230 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Vladislav KamenevAdmirals (NHS)C211996-08-12No194 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm833,333$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1122.64207 Lbs6 ft11.00842,644$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jason DickinsonHudson Fasching40122
2Nick Paul30122
320122
4Hudson Fasching10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
2Dillon Heatherington30122
320122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jason DickinsonHudson Fasching60122
2Nick Paul40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Dillon Heatherington40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Hudson FaschingJason Dickinson40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Dillon Heatherington40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
240122Dillon Heatherington40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Hudson FaschingJason Dickinson40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Dillon Heatherington40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jason DickinsonHudson Fasching
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jason DickinsonHudson Fasching
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nick Paul, Jason Dickinson, Hudson FaschingNick Paul, Jason DickinsonHudson Fasching
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Dillon Heatherington, , Dillon Heatherington,
Tirs de Pénalité
, , Hudson Fasching, Jason Dickinson, Nick Paul
Gardien
#1 : , #2 : Mackenzie Blackwood


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blacknight11000000624110000006240000000000021.0006111700207278232318436409423122776350.00%6183.33%024261039.67%29570841.67%25361241.34%662410672261469226
2Bruins10001000431000000000001000100043121.00047110020727824331843640942815874125.00%4175.00%024261039.67%29570841.67%25361241.34%662410672261469226
3Crunch11000000817000000000001100000081721.000816240020727822931843640942598146350.00%40100.00%024261039.67%29570841.67%25361241.34%662410672261469226
4Devils1010000023-11010000023-10000000000000.0002460020727824231843640944420108200.00%5340.00%024261039.67%29570841.67%25361241.34%662410672261469226
5Heat11000000541000000000001100000054121.00059140020727823531843640942568148337.50%4250.00%024261039.67%29570841.67%25361241.34%662410672261469226
6Icedogs541000003716213210000024121222000000134980.80037711080020727821913184364094144544567231982.61%20575.00%024261039.67%29570841.67%25361241.34%662410672261469226
7Marlies1010000038-5000000000001010000038-500.00035800207278238318436409437137215240.00%10100.00%024261039.67%29570841.67%25361241.34%662410672261469226
8Monsters220000001441022000000144100000000000041.00014274100207278275318436409427828286583.33%90100.00%124261039.67%29570841.67%25361241.34%662410672261469226
9Moose3210000017116211000009811100000083540.667173350002072782131318436409411636363611436.36%18477.78%024261039.67%29570841.67%25361241.34%662410672261469226
10Phantoms1010000036-3000000000001010000036-300.000369002072782363184364094311113135240.00%4325.00%024261039.67%29570841.67%25361241.34%662410672261469226
11Rampages3210000020155211000001011-111000000104640.6672036560020727821363184364094141542535131076.92%10460.00%024261039.67%29570841.67%25361241.34%662410672261469226
12Reigh210010001073100010005411100000053241.000101626002072782703184364094561716186350.00%8275.00%124261039.67%29570841.67%25361241.34%662410672261469226
13Rocket1010000056-1000000000001010000056-100.00059140020727823131843640943241010200.00%5260.00%024261039.67%29570841.67%25361241.34%662410672261469226
14Senateurs1010000027-5000000000001010000027-500.00024600207278242318436409439191514200.00%5260.00%024261039.67%29570841.67%25361241.34%662410672261469226
15Sound Tigers11000000844110000008440000000000021.0008152300207278238318436409445151482150.00%7185.71%124261039.67%29570841.67%25361241.34%662410672261469226
16Stars211000007701010000034-11100000043120.50071219002072782733184364094953620258450.00%9455.56%024261039.67%29570841.67%25361241.34%662410672261469226
Total3019902000172113591610501000945836149401000785523420.7001723154870020727821167318436409410013713433591206856.67%1393872.66%524261039.67%29570841.67%25361241.34%662410672261469226
18Wolves33000000219122200000013671100000083561.00021345500207278212531843640949342533411872.73%20480.00%224261039.67%29570841.67%25361241.34%662410672261469226
_Since Last GM Reset3019902000172113591610501000945836149401000785523420.7001723154870020727821167318436409410013713433591206856.67%1393872.66%524261039.67%29570841.67%25361241.34%662410672261469226
_Vs Conference2015401000123715212740100070472388000000532429320.8001232223450020727827933184364094693257230236865462.79%952672.63%324261039.67%29570841.67%25361241.34%662410672261469226
_Vs Division1612400000102584410640000059411866000000431726240.7501021862880020727826563184364094589222179197664568.18%772172.73%224261039.67%29570841.67%25361241.34%662410672261469226

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
3042W11723154871167100137134335900
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
301992000172113
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
1610510009458
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
149410007855
Derniers 10 Matchs
WLOTWOTL SOWSOL
532000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1206856.67%1393872.66%5
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
31843640942072782
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
24261039.67%29570841.67%25361241.34%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
662410672261469226


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2018-10-091Rampages7Admirals4LSommaire du Match
7 - 2018-10-1525Admirals7Icedogs1WSommaire du Match
9 - 2018-10-1733Stars4Admirals3LSommaire du Match
16 - 2018-10-2451Moose6Admirals3LSommaire du Match
20 - 2018-10-2872Icedogs3Admirals7WSommaire du Match
22 - 2018-10-3082Admirals8Wolves3WSommaire du Match
23 - 2018-10-3185Admirals4Stars3WSommaire du Match
26 - 2018-11-0396Admirals10Rampages4WSommaire du Match
28 - 2018-11-05108Wolves2Admirals7WSommaire du Match
29 - 2018-11-06117Admirals8Moose3WSommaire du Match
32 - 2018-11-09130Rampages4Admirals6WSommaire du Match
35 - 2018-11-12146Monsters3Admirals10WSommaire du Match
38 - 2018-11-15161Admirals3Marlies8LSommaire du Match
40 - 2018-11-17169Admirals5Heat4WSommaire du Match
42 - 2018-11-19179Admirals5Reigh3WSommaire du Match
44 - 2018-11-21184Blacknight2Admirals6WSommaire du Match
48 - 2018-11-25201Admirals2Senateurs7LSommaire du Match
50 - 2018-11-27208Wolves4Admirals6WSommaire du Match
54 - 2018-12-01225Devils3Admirals2LSommaire du Match
60 - 2018-12-07245Monsters1Admirals4WSommaire du Match
66 - 2018-12-13266Admirals8Crunch1WSommaire du Match
68 - 2018-12-15271Sound Tigers4Admirals8WSommaire du Match
70 - 2018-12-17286Admirals3Phantoms6LSommaire du Match
72 - 2018-12-19294Icedogs2Admirals12WSommaire du Match
75 - 2018-12-22306Admirals5Rocket6LSommaire du Match
77 - 2018-12-24317Admirals4Bruins3WXSommaire du Match
79 - 2018-12-26322Icedogs7Admirals5LSommaire du Match
83 - 2018-12-30343Moose2Admirals6WSommaire du Match
87 - 2019-01-03363Reigh4Admirals5WXSommaire du Match
89 - 2019-01-05371Admirals6Icedogs3WSommaire du Match
92 - 2019-01-08388Barracuda-Admirals-
94 - 2019-01-10396Admirals-Icedogs-
98 - 2019-01-14410Admirals-Heat-
99 - 2019-01-15416Bears-Admirals-
104 - 2019-01-20436Penguins-Admirals-
106 - 2019-01-22445Admirals-Barracuda-
108 - 2019-01-24453Admirals-Bears-
110 - 2019-01-26463Wolves-Admirals-
114 - 2019-01-30479Admirals-Penguins-
116 - 2019-02-01486Gulls-Admirals-
118 - 2019-02-03497Admirals-Blacknight-
121 - 2019-02-06509Senateurs-Admirals-
128 - 2019-02-13533Admirals-Sound Tigers-
129 - 2019-02-14537Blacknight-Admirals-
132 - 2019-02-17553Admirals-Devils-
133 - 2019-02-18560Barracuda-Admirals-
136 - 2019-02-21573Admirals-Blacknight-
138 - 2019-02-23583Moose-Admirals-
140 - 2019-02-25588Admirals-Barracuda-
145 - 2019-03-02607Bruins-Admirals-
148 - 2019-03-05627Rocket-Admirals-
150 - 2019-03-07634Admirals-Sound Tigers-
151 - 2019-03-08645Admirals-Wolves-
154 - 2019-03-11655Rampages-Admirals-
157 - 2019-03-14675Admirals-Marlies-
159 - 2019-03-16678Thunderbird-Admirals-
161 - 2019-03-18685Admirals-Stars-
163 - 2019-03-20697Admirals-Thunderbird-
164 - 2019-03-21705Gulls-Admirals-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
169 - 2019-03-26725Admirals-Condors-
171 - 2019-03-28729Crunch-Admirals-
176 - 2019-04-02749Phantoms-Admirals-
182 - 2019-04-08766Admirals-Gulls-
183 - 2019-04-09775Admirals-Monsters-
185 - 2019-04-11779Stars-Admirals-
188 - 2019-04-14798Condors-Admirals-
193 - 2019-04-19815Admirals-Rampages-
195 - 2019-04-21824Condors-Admirals-
199 - 2019-04-25835Admirals-Reigh-
201 - 2019-04-27846Admirals-Stars-
202 - 2019-04-28851Reigh-Admirals-
205 - 2019-05-01863Admirals-Rampages-
207 - 2019-05-03872Stars-Admirals-
209 - 2019-05-05880Admirals-Gulls-
214 - 2019-05-10897Marlies-Admirals-
216 - 2019-05-12909Admirals-Wolves-
217 - 2019-05-13912Admirals-Condors-
220 - 2019-05-16925Admirals-Moose-
222 - 2019-05-18934Heat-Admirals-
225 - 2019-05-21946Admirals-Moose-
227 - 2019-05-23954Heat-Admirals-
234 - 2019-05-30976Marlies-Admirals-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
25 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
768,100$ 926,907$ 926,907$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 350,408$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 147 8,552$ 1,257,144$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
23019902000172113591610501000945836149401000785523421723154870020727821167318436409410013713433591206856.67%1393872.66%524261039.67%29570841.67%25361241.34%662410672261469226
Total Saison Régulière3019902000172113591610501000945836149401000785523421723154870020727821167318436409410013713433591206856.67%1393872.66%524261039.67%29570841.67%25361241.34%662410672261469226