Penguins

GP: 31 | W: 21 | L: 10 | OTL: 0 | P: 42
GF: 173 | GA: 121 | PP%: 49.64% | PK%: 58.57%
DG: Jeremy Lyrette | Morale : 60 | Moyenne d'Équipe : 66
Prochain matchs #356 vs Devils
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Josh LeivoX100.005640837178764465716762626452516158690
2Anthony BeauvillierXXX100.006841827964779070715668647155538058670
3Matthew PecaX100.005542767758689075876064676051514765670
4Jacob de la RoseX100.008142787181767064685156766754547770660
5Jesse PuljujarviX100.006841827783819077505064597153529171660
6Jimmy HayesX98.007140837186786474635457626563575569660
7Zach Aston-ReeseXXX100.006144707672668076654866656350504370650
8Kailer YamamotoX100.006040898449833880505750596050508470630
9Jeremy Bracco (R)X100.004841776039587960506455605550504470600
10Roland McKeownX100.006043717472539757305750605650507270620
Rayé
1Melker KarlssonX100.006842797665828971975459706960553655680
2Mike ReillyX100.006442797274747477306053706654526058680
MOYENNE D'ÉQUIPE99.83634279746873757161575965645452636566
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Nedeljkovic (R)97.00727474797267757373716950617670690
Rayé
MOYENNE D'ÉQUIPE97.0072747479726775737371695061767069
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Benoit Groulx61968380735870CAN504300,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jimmy HayesPenguins (Pit)RW2221335410402817122509717.21%1148822.2015173229680002145265.38%262511022.2100000743
2Jesse PuljujarviPenguins (Pit)RW23172744231351914113396415.04%834715.1376131037000000174.07%273415012.5300001264
3Matthew PecaPenguins (Pit)C2417223924120182775275622.67%1936215.0928107320000182173.85%5011811002.1500000344
4Melker KarlssonPenguins (Pit)C1423163910195214198336123.47%936826.34991814341017414074.27%3772212032.1100001601
5Jacob de la RosePenguins (Pit)LW23812202516026213691222.22%1737216.191123332026231072.73%44810001.0700000014
6Mike ReillyPenguins (Pit)D1541418421510154815178.33%2141927.9548129450228461050.00%21228000.8600001010
7Roland McKeownPenguins (Pit)D2311415292401993314103.03%2942318.4102212301123200100.00%1315000.7100000011
8Josh LeivoPenguins (Pit)LW119514000181235131925.71%520118.353254301011210064.29%1477001.3900000102
9Zach Aston-ReesePenguins (Pit)C/LW/RW239514480232263143414.29%1027411.94224390000141073.42%222119001.0200000000
10Jeremy BraccoPenguins (Pit)RW235712880181232192615.63%1031013.5110122000000150.00%12510000.7700000012
11Anthony BeauvillierPenguins (Pit)C/LW/RW656114207937111913.51%216126.873365130001211056.52%23114001.3600000020
12Kailer YamamotoPenguins (Pit)RW2338113201173712248.11%823710.3221337000031050.00%81610000.9300000000
13Jake DotchinPenguinsD6347420117122725.00%1416627.78325314000024000.00%0312000.8400000001
Stats d'équipe Total ou en Moyenne2361251732981481311522921374125844616.87%163413417.525261113933554372726216572.87%1257175154061.4400003192022
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex NedeljkovicPenguins (Pit)2319300.9103.0513580069764398510.0000230101
Stats d'équipe Total ou en Moyenne2319300.9103.0513580069764398510.0000230101


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Alex NedeljkovicPenguins (Pit)G211996-01-07Yes198 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Anthony BeauvillierPenguins (Pit)C/LW/RW201997-06-08No182 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm894,166$0$0$NoLien
Jacob de la RosePenguins (Pit)LW221995-05-20No210 Lbs6 ft3NoNoNo2Contrat d'EntréePro & Farm900,000$0$0$No900,000$Lien
Jeremy BraccoPenguins (Pit)RW201997-03-17Yes171 Lbs5 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Jesse PuljujarviPenguins (Pit)RW191998-05-07No211 Lbs6 ft4NoNoNo1Contrat d'EntréePro & Farm925,000$0$0$NoLien
Jimmy HayesPenguins (Pit)RW271989-11-21No215 Lbs6 ft5NoNoNo1Avec RestrictionPro & Farm750,000$0$0$NoLien
Josh LeivoPenguins (Pit)LW241993-05-26No210 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Kailer YamamotoPenguins (Pit)RW191998-09-29No154 Lbs5 ft8NoNoNo2Contrat d'EntréePro & Farm925,000$0$0$No925,000$Lien
Matthew PecaPenguins (Pit)C241993-04-27No178 Lbs5 ft8NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Melker KarlssonPenguins (Pit)C271990-07-18No180 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm2,000,000$0$0$No2,000,000$Lien
Mike ReillyPenguins (Pit)D241993-07-13No195 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Roland McKeownPenguins (Pit)D211996-01-20No195 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm750,000$0$0$NoLien
Zach Aston-ReesePenguins (Pit)C/LW/RW231994-08-10No204 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm925,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1322.38193 Lbs6 ft01.23909,167$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jimmy Hayes40122
2Jacob de la RoseMatthew PecaJesse Puljujarvi30122
3Jeremy BraccoZach Aston-ReeseKailer Yamamoto20122
4Jeremy Bracco10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
2Roland McKeown30122
320122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Jimmy Hayes60122
2Jacob de la RoseMatthew PecaJesse Puljujarvi40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Roland McKeown40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Matthew PecaJimmy Hayes40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Roland McKeown40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
240122Roland McKeown40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Matthew PecaJimmy Hayes40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
2Roland McKeown40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jimmy Hayes
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Jimmy Hayes
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Zach Aston-Reese, Kailer Yamamoto, Jacob de la RoseZach Aston-Reese, Kailer YamamotoJacob de la Rose
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Roland McKeown, , Roland McKeown,
Tirs de Pénalité
, , Matthew Peca, Jimmy Hayes, Jacob de la Rose
Gardien
#1 : Alex Nedeljkovic, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bears3300000017710110000008352200000094561.0001729460024727619525935437327328304815533.33%10370.00%036955566.49%38266457.53%39265559.85%691414662253507267
2Blacknight11000000725000000000001100000072521.0007111800247276135259354373223912165480.00%6183.33%036955566.49%38266457.53%39265559.85%691414662253507267
3Bruins330000002461811000000927220000001541161.000243862002472761111259354373277182644151173.33%13376.92%236955566.49%38266457.53%39265559.85%691414662253507267
4Condors10001000431100010004310000000000021.00047110024727613725935437324211616200.00%3233.33%036955566.49%38266457.53%39265559.85%691414662253507267
5Crunch220000001138110000006151100000052341.000111930002472761662593543732622617277228.57%6183.33%236955566.49%38266457.53%39265559.85%691414662253507267
6Devils413000001421-720200000510-521100000911-220.250142640102472761111259354373216646494618738.89%221150.00%036955566.49%38266457.53%39265559.85%691414662253507267
7Icedogs1010000058-3000000000001010000058-300.000581300247276125259354373235191473133.33%7357.14%036955566.49%38266457.53%39265559.85%691414662253507267
8Monsters312000001415-11010000024-2211000001211120.3331425390024727618025935437327815204716850.00%10640.00%036955566.49%38266457.53%39265559.85%691414662253507267
9Moose11000000918000000000001100000091821.00091524002472761592593543732301410155480.00%50100.00%236955566.49%38266457.53%39265559.85%691414662253507267
10Phantoms33000000191092200000015961100000041361.00019355400247276184259354373211167284013753.85%14657.14%036955566.49%38266457.53%39265559.85%691414662253507267
11Reigh220000001468110000007341100000073441.0001420340024727617625935437326515161611654.55%80100.00%036955566.49%38266457.53%39265559.85%691414662253507267
12Sound Tigers312000001218-62110000087110100000411-720.33312223400247276189259354373212236343012433.33%171229.41%036955566.49%38266457.53%39265559.85%691414662253507267
13Stars1010000028-6000000000001010000028-600.000246002472761242593543732551410163133.33%5420.00%036955566.49%38266457.53%39265559.85%691414662253507267
14Thunderbird321000002113821100000121021100000093640.66721365700247276196259354373210134283612866.67%14657.14%036955566.49%38266457.53%39265559.85%691414662253507267
Total31201001000173121521485010007652241712500000976928420.677173295468102472761988259354373210403523004041376849.64%1405858.57%636955566.49%38266457.53%39265559.85%691414662253507267
_Since Last GM Reset31201001000173121521485010007652241712500000976928420.677173295468102472761988259354373210403523004041376849.64%1405858.57%636955566.49%38266457.53%39265559.85%691414662253507267
_Vs Conference24168000001329339127500000654619129300000674720320.66713223036210247276173225935437327902702323181085248.15%1064854.72%436955566.49%38266457.53%39265559.85%691414662253507267
_Vs Division1697000007671584400000383358530000038380180.563761372131024727614592593543732550192161211743141.89%733847.95%036955566.49%38266457.53%39265559.85%691414662253507267

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
3142W4173295468988104035230040410
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3120101000173121
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
148510007652
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
1712500009769
Derniers 10 Matchs
WLOTWOTL SOWSOL
811000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1376849.64%1405858.57%6
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
25935437322472761
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
36955566.49%38266457.53%39265559.85%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
691414662253507267


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-10-1111Phantoms3Penguins7WSommaire du Match
5 - 2018-10-1320Penguins4Phantoms1WSommaire du Match
8 - 2018-10-1630Penguins1Devils8LSommaire du Match
12 - 2018-10-2040Devils6Penguins3LSommaire du Match
18 - 2018-10-2660Monsters4Penguins2LSommaire du Match
21 - 2018-10-2976Thunderbird9Penguins6LSommaire du Match
24 - 2018-11-0187Penguins4Bears2WSommaire du Match
26 - 2018-11-0398Penguins4Sound Tigers11LSommaire du Match
27 - 2018-11-04103Penguins4Monsters6LSommaire du Match
29 - 2018-11-06114Sound Tigers4Penguins3LSommaire du Match
32 - 2018-11-09131Penguins9Thunderbird3WSommaire du Match
33 - 2018-11-10137Bears3Penguins8WSommaire du Match
37 - 2018-11-14157Phantoms6Penguins8WSommaire du Match
39 - 2018-11-16167Penguins7Blacknight2WSommaire du Match
41 - 2018-11-18176Devils4Penguins2LSommaire du Match
47 - 2018-11-24197Penguins2Stars8LSommaire du Match
49 - 2018-11-26205Reigh3Penguins7WSommaire du Match
51 - 2018-11-28212Penguins9Moose1WSommaire du Match
54 - 2018-12-01226Bruins2Penguins9WSommaire du Match
56 - 2018-12-03231Penguins8Bruins2WSommaire du Match
60 - 2018-12-07243Penguins5Crunch2WSommaire du Match
62 - 2018-12-09252Sound Tigers3Penguins5WSommaire du Match
64 - 2018-12-11257Penguins8Monsters5WSommaire du Match
67 - 2018-12-14269Penguins5Icedogs8LSommaire du Match
69 - 2018-12-16280Penguins7Bruins2WSommaire du Match
70 - 2018-12-17287Thunderbird1Penguins6WSommaire du Match
74 - 2018-12-21305Condors3Penguins4WXSommaire du Match
76 - 2018-12-23312Penguins8Devils3WSommaire du Match
80 - 2018-12-27330Crunch1Penguins6WSommaire du Match
82 - 2018-12-29340Penguins7Reigh3WSommaire du Match
84 - 2018-12-31350Penguins5Bears2WSommaire du Match
86 - 2019-01-02356Devils-Penguins-
89 - 2019-01-05373Penguins-Senateurs-
90 - 2019-01-06380Heat-Penguins-
94 - 2019-01-10395Penguins-Senateurs-
96 - 2019-01-12401Penguins-Blacknight-
97 - 2019-01-13407Bruins-Penguins-
102 - 2019-01-18427Senateurs-Penguins-
104 - 2019-01-20436Penguins-Admirals-
107 - 2019-01-23451Rocket-Penguins-
109 - 2019-01-25458Penguins-Heat-
112 - 2019-01-28473Penguins-Barracuda-
114 - 2019-01-30479Admirals-Penguins-
116 - 2019-02-01485Penguins-Monsters-
118 - 2019-02-03495Penguins-Condors-
120 - 2019-02-05503Monsters-Penguins-
127 - 2019-02-12527Blacknight-Penguins-
131 - 2019-02-16546Penguins-Phantoms-
132 - 2019-02-17552Rocket-Penguins-
136 - 2019-02-21572Thunderbird-Penguins-
138 - 2019-02-23582Penguins-Thunderbird-
141 - 2019-02-26596Sound Tigers-Penguins-
146 - 2019-03-03614Penguins-Gulls-
147 - 2019-03-04621Stars-Penguins-
150 - 2019-03-07637Penguins-Phantoms-
152 - 2019-03-09646Phantoms-Penguins-
155 - 2019-03-12665Icedogs-Penguins-
157 - 2019-03-14673Penguins-Crunch-
162 - 2019-03-19692Wolves-Penguins-
166 - 2019-03-23710Senateurs-Penguins-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
168 - 2019-03-25718Penguins-Rampages-
172 - 2019-03-29735Moose-Penguins-
175 - 2019-04-01744Penguins-Devils-
179 - 2019-04-05757Rampages-Penguins-
183 - 2019-04-09773Penguins-Thunderbird-
185 - 2019-04-11781Barracuda-Penguins-
187 - 2019-04-13792Penguins-Wolves-
191 - 2019-04-17807Marlies-Penguins-
195 - 2019-04-21822Penguins-Bears-
197 - 2019-04-23831Monsters-Penguins-
201 - 2019-04-27845Penguins-Marlies-
202 - 2019-04-28854Penguins-Rocket-
204 - 2019-04-30859Crunch-Penguins-
207 - 2019-05-03871Penguins-Rocket-
209 - 2019-05-05881Bears-Penguins-
214 - 2019-05-10900Bears-Penguins-
218 - 2019-05-14918Marlies-Penguins-
220 - 2019-05-16927Penguins-Marlies-
221 - 2019-05-17931Penguins-Sound Tigers-
227 - 2019-05-23952Gulls-Penguins-
233 - 2019-05-29970Gulls-Penguins-
235 - 2019-05-31983Penguins-Sound Tigers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
27 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
523,167$ 1,181,917$ 1,166,917$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 416,827$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 153 6,253$ 956,709$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
23120100100017312152148501000765224171250000097692842173295468102472761988259354373210403523004041376849.64%1405858.57%636955566.49%38266457.53%39265559.85%691414662253507267
Total Saison Régulière3120100100017312152148501000765224171250000097692842173295468102472761988259354373210403523004041376849.64%1405858.57%636955566.49%38266457.53%39265559.85%691414662253507267